Math, asked by Anonymous, 1 day ago

Solve the question in the attachment!​

Attachments:

Answers

Answered by mathdude500
5

Question :-

\rm \:If \:  y  =  {x}^{2}  + \dfrac{1}{ {x}^{2} + \dfrac{1}{ {x}^{2}  +  \dfrac{1}{ {x}^{2}  +  \dfrac{1}{ {x}^{2} +  -  -  -  \infty  } } }  } , \: then \: \dfrac{dy}{dx} =   \\

\large\underline{\sf{Solution-}}

\rm \: y  =  {x}^{2}  + \dfrac{1}{ {x}^{2} + \dfrac{1}{ {x}^{2}  +  \dfrac{1}{ {x}^{2}  +  \dfrac{1}{ {x}^{2} +  -  -  -  \infty  } } }  }   \\

can be rewritten as

\rm \: y  =  {x}^{2}  + \dfrac{1}{y}   \\

can be further rewritten as

\rm \: y  =  {x}^{2}  +  {y}^{ - 1}    \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}y  = \dfrac{d}{dx}\bigg( {x}^{2}  +  {y}^{ - 1} \bigg)   \\

We know,

\boxed{\sf{  \:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \\

So, on using this result, we get

\rm \: \dfrac{dy}{dx} =  {2x}^{2 - 1}  -  {y}^{ - 1 - 1}\dfrac{dy}{dx} \\

\rm \: \dfrac{dy}{dx} =  2x  -  {y}^{ - 2}\dfrac{dy}{dx} \\

\rm \: \dfrac{dy}{dx} =  2x  - \dfrac{1}{ {y}^{2} } \dfrac{dy}{dx} \\

\rm \: \dfrac{dy}{dx}  + \dfrac{1}{ {y}^{2} } \dfrac{dy}{dx}  = 2x\\

\rm \: \bigg(1  + \dfrac{1}{ {y}^{2} }\bigg) \dfrac{dy}{dx}  = 2x\\

\rm \: \bigg(\dfrac{ {y}^{2}  + 1}{ {y}^{2} }\bigg) \dfrac{dy}{dx}  = 2x\\

\rm\implies \:\dfrac{dy}{dx} = \dfrac{2x {y}^{2} }{ {y}^{2}  + 1}  \\

[ Remark ]

Alter Solution

\rm \: y  =  {x}^{2}  + \dfrac{1}{ {x}^{2} + \dfrac{1}{ {x}^{2}  +  \dfrac{1}{ {x}^{2}  +  \dfrac{1}{ {x}^{2} +  -  -  -  \infty  } } }  }   \\

can be rewritten as

\rm \: y  =  {x}^{2}  + \dfrac{1}{y}   \\

\rm \:  {y}^{2} =  y{x}^{2}  + 1 \\

On differentiating both sides w. r. t. x, we get

\rm \:  \dfrac{d}{dx}{y}^{2} =  \dfrac{d}{dx}(y{x}^{2}  + 1) \\

\rm \: 2y\dfrac{dy}{dx} =  {x}^{2}\dfrac{d}{dx}y + y\dfrac{d}{dx} {x}^{2}  + 0 \\

\rm \: 2y\dfrac{dy}{dx} =  {x}^{2}\dfrac{dy}{dx} +2xy \\

\rm \: 2y\dfrac{dy}{dx} - {x}^{2}\dfrac{dy}{dx}  = 2xy \\

\rm \: \bigg(2y - {x}^{2}\bigg)\dfrac{dy}{dx}  = 2xy \\

\rm\implies \:\dfrac{dy}{dx} =  \dfrac{2xy}{2y -  {x}^{2} }  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by maheshtalpada412
2

Step-by-step explanation:

 \color{purple} \begin{array}{ |c|  }  \hline \text{\boxed{\sf Solution.} Given} \tt\quad  y=x^{2}+\dfrac{1}{x^{2}+\dfrac{1}{x^{2}+\ldots \infty}}\\ \\  \tt \Rightarrow \quad y=x^{2}+\frac{1}{y} \Rightarrow x^{2}=y-\frac{1}{y} \\ \\  \tt \Rightarrow \quad y^{2}=y x^{2}+1 \\ \\ \tt\text{differentiating w.r.t.  x}  \\ \\  \tt \Rightarrow \quad \dfrac{d y}{d x}\left(2 y-x^{2}\right)=y \cdot 2 x+x^{2} \cdot \dfrac{d y}{d x}+0 \\ \\  \tt\Rightarrow \quad \dfrac{d y}{d x}=\dfrac{2 x y}{2 y-x^{2}} \\ \\ \tt \Rightarrow \quad \dfrac{d y}{d x}=\cfrac{2 x y}{2 y-y+\dfrac{1}{y}} \\ \\ \tt \Rightarrow \quad \dfrac{d y}{d x}=\dfrac{2 x y^{2}}{1+y^{2}}  \end{array}

Similar questions