Math, asked by luhan581, 1 year ago

solve the question in the attachment and give step by step explanation... ​

Attachments:

Answers

Answered by wardahd1234
4

Here is your answer.

Check out the attachment

Thanks

Attachments:

wardahd1234: hope this helps
Answered by superjunior
3

Hlw...

 \frac{ 3\sqrt{2} }{ \sqrt{6} -  \sqrt{3}  }  =  \frac{3 \sqrt{2} \times ( \sqrt{6}  +  \sqrt{3} ) }{6 - 3}  = \frac{3( \sqrt{12}  +  \sqrt{6})}{4}  \\  \\  =  =  >  \sqrt{12}  +  \sqrt{6}  \\  \\   \frac{4 \sqrt{3} }{ \sqrt{6} -  \sqrt{2}  }  =  \frac{4 \sqrt{3} \times ( \sqrt{6}   +  \sqrt{2} )}{6 - 2}   \\  \\ =  \frac{4( \sqrt{18} +  \sqrt{6}  )}{4}  =  \sqrt{18}  +  \sqrt{6}  \\  \\  \\

Again..

 \frac{6}{ \sqrt{18} +  \sqrt{12}  }  =  \frac{6( \sqrt{18}  -  \sqrt{12}) }{18 - 12}  \\  \\  = \frac{6 \times ( \sqrt{18}  -  \sqrt{12} )}{6}  =  \sqrt{18}  -  \sqrt{12}  \\  \\  = ( \sqrt{12} +  \sqrt{6}  ) - ( \sqrt{18} +  \sqrt{6}  ) + ( \sqrt{18} -  \sqrt{12}   \\  \\  =  \sqrt{12}  +  \sqrt{6}  -  \sqrt{18}  -  \sqrt{6}  +  \sqrt{18}  -  \sqrt{12}  \\  \\  =  =  > 0


wardahd1234: Great Answer :)
Similar questions