Math, asked by Anonymous, 17 days ago

Solve the question in the attachment!

Don't spam!!!!! ​

Attachments:

Answers

Answered by suhail2070
3

Answer:

OPTION C IS CORRECT.

HENCE PROVED

Step-by-step explanation:

1 +  \frac{ { \cot( \alpha ) }^{2} }{1 +  \csc( \alpha ) }  = 1 +   \frac{{ \cos( \alpha ) }^{2}}{ { \sin( \alpha ) }^{2}(1 +  \csc( \alpha )) }   \\  \\  = 1 +  \frac{ { \cos( \alpha ) }^{2} }{ { \sin( \alpha ) }^{2} +  \sin( \alpha )  }  \\  \\  =  \frac{ { \sin( \alpha ) }^{2}  +  \sin( \alpha )  +  { \cos( \alpha ) }^{2} }{ { \sin( \alpha ) +  \sin( \alpha )  }^{2} }  \\  \\  =  \frac{1 +  \sin( \alpha ) }{ \sin( \alpha ) (1 +  \sin( \alpha )) } \\   \\  =  \frac{1}{ \sin( \alpha ) }  \\  \\  =  \csc( \alpha )  = rhs.


Aryan0123: Good !
Answered by Anonymous
37

Given :-

 \quad \leadsto \quad \sf 1 + \dfrac{\cot² \alpha}{1 + \cosec \alpha}

To Find :-

Value of Given

Solution :-

We knows that ;

  •  \sf \cot² \theta + 1= \cosec² \theta  \: \: \forall  \: \: \theta \in \mathbb R

Using this we have ;

 \quad \leadsto \quad \bf 1 + \dfrac{\cosec² \alpha - 1}{1 + \cosec \alpha}

further can written as ;

 { : \implies \quad \sf  1 + \dfrac{\cosec² \alpha - 1²}{1 + \cosec \alpha}}

we knows that ;

  • a² - b² = ( a + b ) ( a - b )

using this we have ;

 { : \implies \quad \sf 1 + \dfrac{( \cosec \alpha + 1 ) ( \cosec \alpha - 1 )}{1 + \cosec \alpha}}

 { : \implies \quad \sf 1 + \dfrac{\cancel{( \cosec \alpha + 1 )} ( \cosec \alpha - 1 )}{\cancel{(cosec \alpha+1)}}}

 { : \implies \quad \sf 1 + \cosec \alpha - 1 }

 { : \implies \quad \sf \cancel{1} + \cosec \alpha - \cancel{1} }

 { : \implies \quad \bf \cosec \alpha}

Henceforth , Option (c) is correct :D

 \quad \qquad { \bigstar {  \underline { \boxed { \pmb { \red { \underbrace { \bf { \therefore 1 + \dfrac{\cot² \alpha}{1 + \cosec \alpha} = \cosec \alpha }}}}}}}}{\bigstar} \quad \qquad


Aryan0123: Perfect !
Similar questions