Math, asked by adirajput11, 5 months ago

solve the question number c​

Attachments:

Answers

Answered by harshitdhio333
12

Answer:

by using identity (a+b)² = a²+b²+2ab , we get -

(3x²/4+4y²/7)²

= 9x⁴/16 + 16y⁴/49 + 6/7x²y²

Step-by-step explanation:

follow me and mark it as a brainliest answer

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\textbf{\textsf{\orange{Solution:}}}}

 \:  \:  \bullet  \small\green{ \bold{ \underline{step \: by \: step \: explaination}}}

 \:  \:   \\ \quad \implies \displaystyle \sf{ \bigg( \frac{3 {x}^{2} }{7}  +  \frac{4 {y}^{2} }{7} \bigg) \bigg( \frac{ 3{x}^{2} }{4}  +  \frac{4 {y}^{2} }{7}  } \bigg)

 \:  \: \\   \quad \implies \displaystyle \sf{ \bigg(\frac{ 3{x}^{2} }{7} } \bigg( \frac{ 3{x}^{2} }{4}  +  \frac{ 4{y}^{2} }{7}  \bigg) +  \frac{ 4{y}^{2} }{7}  \bigg( \frac{ 3{x}^{2} }{4}  +  \frac{ 4{y}^{2} }{7}  \bigg) \bigg)

 \:  \\  \quad \implies \displaystyle \sf{ \bigg( \frac{ 9{x}^{4} }{28}  +  \frac{ 12{x}^{2} {y}^{2}  }{49} } +  \frac{ 12{x}^{2}  {y}^{2} }{28}  +  \frac{ 16{y}^{4} }{49}  \bigg)

  \\ \quad \implies \displaystyle \sf{ \bigg( \frac{9 {x}^{4} }{28}  +  \frac{12 {x}^{2} {y}^{2}  }{49}  +  \frac{3 \times 7 {x}^{2}  {y}^{2} }{49}  +  \frac{16 {y}^{4} }{49} } \bigg)

 \:  \:  \\  \quad \implies \displaystyle \sf{ \bigg( \frac{ 9{x}^{4} }{28} +  \frac{33 {x}^{2} {y}^{2}  }{49}   +  \frac{ 16{y}^{4} }{49}  \bigg)}

 \:  \:  \\  \quad \implies \boxed{ \boxed{ \displaystyle  \sf{ \bigg( \frac{9 {x}^{4} }{28}  +  \frac{32 {x}^{2} {y}^{2}  }{49}  +  \frac{16 {y}^{4} }{49} \bigg) }} }

\pink{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}

Similar questions