Math, asked by palakrajput229, 1 month ago

Solve the question
please help me ​

Attachments:

Answers

Answered by deeplatarawat
3

Answer:

3rd question Answer I think this helpful for you

Attachments:
Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \: given \: quadratic \: equation \: is \:  \\ (p - q) {}^{2} .x {}^{2}  \:  + 2(p { }^{2}  - q {}^{2} ).x + k = 0 \\ on \: comparing \: this \: quadratic \: equation \: with \: ax {}^{2}  + bx + c = 0 \\ we \: get \\ a = (p - q) {}^{2}  \\ b = 2(p {}^{2}  - q {  }^{2} ) \\ c = k

now \: let \: its \: roots \: be \:  \alpha  \: and \:  \beta  \: respectively \\ so \: here \:  \alpha  =  \beta  \:  \:  \:  \:  \:  \:  \: (given) \\  \\ so \: we \: know \: that \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\  \alpha  +  \alpha  =    \frac{ - 2(p {}^{2}  - q {}^{2} )}{(p - q) {}^{2} }  \\  \\ 2 \alpha  =  \frac{ - 2(p + q)(p - q)}{(p - q)(p - q)}  \\  \\  \alpha  =   \frac{ - (p + q)}{(p - q)}  \:  \:  \:  \:  \:  \: (1)

similarly \: we \: know \: that \\  \alpha  \beta  =  \frac{c}{a}  \\  \\  \alpha . \alpha  =  \frac{k}{(p - q) {}^{2} }  \\  \\  \alpha  {}^{2}  =  \frac{k}{(p - q) {}^{2} }  \\ \\  ( \frac{ - (p + q)}{p - q)} ) {}^{2}  =  \frac{k}{(p - q) {}^{2} }  \\  \\ ( \frac{p + q}{p - q} ) {}^{2}  =  \frac{k}{(p - q) {}^{2} }  \\  \\  \frac{(p + q) {}^{2} }{(p - q) {}^{2} }  =  \frac{k}{(p - q) {}^{2} }  \\  \\ k = (p + q) {}^{2}

Similar questions