Math, asked by najakatkhan, 5 months ago

solve the question please question is if a= root 5 - 3 / root 5 + root 3 and B = root 5 + root 3 / root 5 - root 3 find a + b + ab ​


najakatkhan: hello
najakatkhan: please solve the question
najakatkhan: answer in nine

Answers

Answered by anchitsingh40
0

Answer:

Given :-

\sf \dfrac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } = a + b \sqrt{15}

5

3

5

+

3

=a+b

15

Required to find :-

Values of " a " and " b "

Identities used :-

( x + y ) ( x + y ) = ( x + y )²

( x + y ) ( x - y ) = x² - y²

( x + y )² = x² + 2xy + y²

Solution :-

Given information :-

\rm \dfrac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} + \sqrt{3} } = a + b \sqrt{5}

5

+

3

5

+

3

=a+b

5

we need to find the values of ' a ' and ' b '

So,

Consider the LHS part

\tt \dfrac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} }

5

3

5

+

3

Here,

We need to rationalize the denominator !

So,

Rationalising factor of √5 - √3 = √5 + √3

Hence,

Multiply both numerator and denominator with that factor

So,

\tt \dfrac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \times \dfrac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} + \sqrt{3} }

5

3

5

+

3

×

5

+

3

5

+

3

Here we need to use some algebraic Identities

They are ,

1. ( x + y ) ( x + y ) = ( x + y )²

2. ( x + y ) ( x - y ) = x² - y²

3. ( x + y )² = x² + 2xy + y²

So,

Using 1 and 2 we get ;

\rm \dfrac{( \sqrt{5} + \sqrt{3} {)}^{2} }{( \sqrt{5} {)}^{2} - ( \sqrt{3} {)}^{2} }

(

5

)

2

−(

3

)

2

(

5

+

3

)

2

Using the 3rd identity expand the numerator

\tt \dfrac{( \sqrt{5} {)}^{2} + ( \sqrt{3} {)}^{2} + 2( \sqrt{5} )( \sqrt{3} ) }{5 - 3}

5−3

(

5

)

2

+(

3

)

2

+2(

5

)(

3

)

This implies,

\tt \dfrac{5 + 3 + 2 \sqrt{15} }{2}

2

5+3+2

15

\begin{gathered} \tt \dfrac{ 8 + 2 \sqrt{15} }{2} \\ \\ \tt \dfrac{2 \: ( \: 4 + \sqrt{15} \: ) }{2} \end{gathered}

2

8+2

15

2

2(4+

15

)

2 gets cancelled in both numerator and denominator

So,

we are left with ;

\tt 4 + \sqrt{15}4+

15

Now,

Compare the LHS and RHS parts

\rm 4 + \sqrt{15} = a + b \sqrt{15}4+

15

=a+b

15

From the above comparison we can conclude that the LHS in the form of RHS

So,

Equal the values on both sides

Hence,

a = 4

b = 1

Therefore,

Values of " a " and " b " are 4 & 1

Step-by-step explanation:

please mark me as brainliest


najakatkhan: hello
anchitsingh40: hi
najakatkhan: it is not answer
najakatkhan: answer is 9
najakatkhan: please solve the question
anchitsingh40: it is the answer or root 5 -3/ root 5+3
najakatkhan: Answer is 9
najakatkhan: question in if a= root 5 - 3 / root 5 + root 3 and b =root 5 + root 3/ root 5- root 3 find a + b + ab
Answered by jai32138
0

Answer:

  \sqrt{5 + 3  | \sqrt{5 - 3} | }

Similar questions