Math, asked by tanmaydafe, 5 months ago

solve the question present in the image.
WRONG ANSWER WILL BE REPORTED INSTANTLY!!!!!!!​

Attachments:

Answers

Answered by yashaswini3679
6

LHS

=  \sqrt{ \frac{1 - cos \: A }{1 + cos \: A} }

Rationalising the denominator

=  \sqrt{ \frac{1 - cos \: A }{1 + cos \: A} \times  \frac{1  - cos \: A}{1   -  cos \: A}  }

=  \sqrt{ \frac{ {(1 - cos \: A )\: }^{2} }{ {1}^{2}  -  {cos}^{2} A} }

=  \frac{1 - cos \: A}{sin \: A}

=  \frac{1}{sin \: A}  -  \frac{cos \: A }{sin \: A}

= cosec \: A - cot \: A

= RHS

Hence, proved

Answered by EnchantedBoy
9

\bigstar\huge\bf\underline{\underline{Answer:-}}

\bigstar\bf\underline{\underline{To \ prove:-}}

\bf \sqrt{\frac{1-cosA}{1+cosA}}=cosecA - cotA

\bigstar\bf\underline{\underline{Proof:-}}

\bf LHS = \sqrt{\frac{1-cosA}{1+cosA}}=cosecA - cotA

\implies\bf\sqrt{\frac{1-cosA}{1+cosA}\times\frac{1-cosA}{1-cosA}}

\implies\bf\sqrt{\frac{(1+cosA)^{2}}{1-cos^{2}A}}

\implies\bf\sqrt{\frac{(1+cosA)^{2}}{sin^{2}A}}

\implies\bf\frac{1-cosA}{sin^{2}A}

\implies\bf\frac{1-cosA}{sinA}

\implies\boxed{\boxed{\bf cosecA - cotA}}

Similar questions