Math, asked by Anonymous, 6 months ago

Solve the question quickly, please!
Using Trigonometric identities.

Attachments:

Answers

Answered by MagicalBeast
6

Let : I'm taking x in place of theta

To prove :  { ( 1+cot²x) tan x } ÷ sec²x = cot x

Identity used :

  • cosec²∅ = 1 + cot²∅

  • tan ∅ = sin ∅ ÷ cos ∅

  • cosec ∅ = 1 ÷ sin ∅

  • cot ∅ = cos ∅ ÷ sin ∅

  • sec ∅ = 1 ÷ cos ∅

  • \dfrac{\frac{a}{b} }{\frac{c}{d} }\: = \:\dfrac{a\times d}{b\times c}

Solution :

LHS

\dfrac{(1 +  { \cot(x) }^{2}) \tan(x) }{ { \sec(x) }^{2} }   \\ \\ \\  =  \dfrac{ { \csc(x)^{2} \times  \tan(x)  } }{ { \sec(x) }^{2} }  \\  \\\\  =   \dfrac{ \dfrac{1}{ { \sin(x) }^{2} } \times   \dfrac{ \sin(x) }{ \cos(x) }  }{ \dfrac{1}{ { \cos(x) }^{2} } }  \\\\  \\   =  \dfrac{ { \cos(x) }^{2} }{ \sin(x)  \cos(x) }  \\\\  \\  =  \dfrac{ \cos(x) }{ \sin(x) }  \\  \\  =  \cot(x)

RHS = cot x

LHS = RHS

HENCE PROVED

Similar questions