Math, asked by vishu126191, 1 day ago

solve the question step by step​

Attachments:

Answers

Answered by anindyaadhikari13
3

Solution:

Given Integral:

 \displaystyle \rm \longrightarrow I = \int {x}^{ \frac{13}{2} }(1 + {x}^{ \frac{5}{2} } )^{ \frac{1}{2} }  \: dx

Let us assume that:

 \rm \longrightarrow u =1 +  {x}^{ \frac{5}{2} }

 \rm \longrightarrow \dfrac{du}{dx}  = \dfrac{5{x}^{ \frac{3}{2} }}{2}

 \rm \longrightarrow dx = \dfrac{2 \: du}{5{x}^{ \frac{3}{2} }}

Now:

 \rm \longrightarrow u =1 +  {x}^{ \frac{5}{2} }

 \rm \longrightarrow u - 1 = {x}^{ \frac{5}{2} }

 \rm \longrightarrow {x}^{5} =  {(u- 1)}^{2}

So, the integral changes to:

 \displaystyle \rm \longrightarrow I = \int {x}^{ \frac{13}{2} } \sqrt{u} \times\dfrac{2 \: du}{5 {x}^{ \frac{3}{2} } }

 \displaystyle \rm \longrightarrow I =  \dfrac{2}{5} \int {x}^{5} \sqrt{u}  \: du

 \displaystyle \rm \longrightarrow I =  \dfrac{2}{5} \int {(u - 1)}^{2}  \sqrt{u}  \: du

 \displaystyle \rm \longrightarrow I =  \dfrac{2}{5} \int  \bigg[ {u}^{ \frac{5}{2} } - 2 {u}^{ \frac{3}{2} } +  \sqrt{u}  \bigg]  \: du

 \displaystyle \rm \longrightarrow I =  \dfrac{2}{5} \bigg[  \int{u}^{ \frac{5}{2} }  \: du-  \int2 {u}^{ \frac{3}{2} } \: du +  \int\sqrt{u}   \: du\bigg]

 \displaystyle \rm \longrightarrow I =  \dfrac{2}{5} \bigg[ \dfrac{2 {u}^{ \frac{7}{2} } }{7} -  2\int{u}^{ \frac{3}{2} } \: du +  \int\sqrt{u}   \: du\bigg]

 \displaystyle \rm \longrightarrow I =  \dfrac{2}{5} \bigg[ \dfrac{2 {u}^{ \frac{7}{2} } }{7} -2 \times  \dfrac{2 {u}^{ \frac{5}{2} } }{5}    +  \dfrac{2 {u}^{ \frac{3}{2} } }{3} \bigg]  + C

 \displaystyle \rm \longrightarrow I =  \dfrac{4 {u}^{ \frac{7}{2} } }{35} -\dfrac{8 {u}^{ \frac{5}{2} } }{25}    +  \dfrac{4 {u}^{ \frac{3}{2} } }{15}  + C

Substituting back the value of u, we get:

 \displaystyle \rm \longrightarrow I =  \dfrac{4 {(1 +  {x}^{ \frac{5}{2} } )}^{ \frac{7}{2} } }{35} -\dfrac{8 {(1 +  {x}^{ \frac{5}{2} } )}^{ \frac{5}{2} } }{25}    +  \dfrac{4 {(1 +  {x}^{ \frac{5}{2} } )}^{ \frac{3}{2} } }{15}  + C

★ Which is our required answer.

Additional Information:

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}


anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions