Math, asked by vishu126191, 1 day ago

solve the question step by step​

Attachments:

Answers

Answered by gamingxyz113
0

Let, I=∫(sinx−2cosx)(2sinx+cosx)1dx=∫2sin2x−3sinxcosx−2cos2x1dx=∫−2(cos2x−sin2x)−3sinxcosx1dx=−∫2cos2x+23sin2x1dx

Now, let tanx=t∴dx=1+t22dt,cos2x=1+t21−t2,sin2x=1+t22t

We can write, 

I=−∫2(1+t21−t2)+23(1+t2

Answered by anindyaadhikari13
3

Solution:

Given Integral:

 \displaystyle \rm \longrightarrow I = \int \dfrac{dx}{( \sin x - 2 \cos x)(2 \sin x +  \cos x)}

Can be written as:

 \displaystyle \rm \longrightarrow I = \int \dfrac{\sec^{2}x}{\sec^{2}x( \sin x - 2 \cos x)(2 \sin x +  \cos x)}  \: dx

 \displaystyle \rm \longrightarrow I = \int \dfrac{\sec^{2} x}{\sec x( \sin x - 2 \cos x) \times  \sec x(2 \sin x +  \cos x)}  \: dx

 \displaystyle \rm \longrightarrow I = \int \dfrac{\sec^{2} x}{ \dfrac{1}{ \cos x} ( \sin x - 2 \cos x) \times   \dfrac{1}{ \cos x} (2 \sin x +  \cos x)}  \: dx

 \displaystyle \rm \longrightarrow I = \int \dfrac{\sec^{2} x}{( \tan x - 2)(2 \tan x + 1)}  \: dx

Now, let us assume that:

 \rm \longrightarrow u = \tan x

 \rm \longrightarrow du= \sec^{2}x \: dx

So, the integral changes to:

 \displaystyle \rm \longrightarrow I = \int \dfrac{du}{(u- 2)(2u + 1)}

After converting to partial fraction, we get:

 \displaystyle \rm \longrightarrow I = \int \bigg[ \dfrac{1}{5(u - 2)}  -  \dfrac{2}{5(2u + 1)} \bigg] \: du

 \displaystyle \rm \longrightarrow I = \dfrac{1}{5}  \int \bigg[ \dfrac{1}{u - 2}  -  \dfrac{2}{2u + 1} \bigg] \: du

 \displaystyle \rm \longrightarrow I = \dfrac{1}{5}  \int \dfrac{du}{u - 2} -  \dfrac{1}{5} \int \dfrac{2 \: du}{2u + 1}

 \displaystyle \rm \longrightarrow I = \dfrac{1}{5}  \int \dfrac{du}{u - 2} -  \dfrac{2}{5} \int \dfrac{du}{2u + 1}

Now, let us assume that:

 \rm \longrightarrow v=u - 1

 \rm \longrightarrow dv=du

 \rm \longrightarrow w=2u + 1

 \rm \longrightarrow dw=2 \: du

So, the integral changes to:

 \displaystyle \rm \longrightarrow I = \dfrac{1}{5}  \int \dfrac{dv}{v} -  \dfrac{2}{5} \int \dfrac{dw}{2w}

 \displaystyle \rm \longrightarrow I = \dfrac{1}{5}  \int \dfrac{dv}{v} -  \dfrac{1}{5} \int \dfrac{dw}{w}

 \displaystyle \rm \longrightarrow I = \dfrac{1}{5} \ln( |v| )  -  \dfrac{1}{5} \ln( |w| )  + C

 \displaystyle \rm \longrightarrow I = \dfrac{1}{5} \ln \bigg(  \bigg| \dfrac{v}{w} \bigg | \bigg)  + C

Substituting back the values, we get:

 \displaystyle \rm \longrightarrow I = \dfrac{1}{5} \ln \bigg(  \bigg| \dfrac{u - 2}{2u + 1} \bigg | \bigg)  + C

 \displaystyle \rm \longrightarrow I = \dfrac{1}{5} \ln \bigg(  \bigg| \dfrac{ \tan x- 2}{2 \tan x+ 1} \bigg | \bigg)  + C

★ Which is our required answer.

Learn More:

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}


anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions