Math, asked by dilbagranga789pc9jg1, 1 year ago

solve the question tan X + tan 2 X + tan X tan 2x =1

Answers

Answered by shivam8058
15
tan x+tan2x+tanx tan2x=1
Attachments:
Answered by Pitymys
49

Recall the identity,

 \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}  .

Now,

 \tan (2x+x)=\frac{\tan 2x+\tan x}{1-\tan 2x \tan x} =\tan 3x\\<br />\tan 2x+\tan x=(1-\tan 2x \tan x)\tan 3x<br />

Note that  \cos 3x \neq 0

 \tan 2x+\tan x+\tan 2x\tan x-1=(1-\tan 2x \tan x)\tan 3x+\tan 2x\tan x-1=0\\<br />(1-\tan 2x \tan x)(\tan 3x-1)=0\\<br />(1-\tan 2x \tan x)(\tan 3x-1)=0\\<br />(1-\frac{\sin 2x \sin x}{\cos 2x \cos x})(\tan 3x-1)=0\\<br />(\frac{\cos 2x \cos x-\sin 2x \sin x}{\cos 2x \cos x})(\tan 3x-1)=0\\<br />(\frac{\cos 3x }{\cos 2x \cos x})(\tan 3x-1)=0\\<br />(\frac{\cos 3x }{\cos 2x \cos x})(\tan 3x-1)=0\\<br />

The solution of the above equation are,

 \cos 3x=0,\tan 3x=1

The general solution of  \cos 3x=0 is

 3x=2n\pi \pm \frac{\pi}{2} ,n=0,1,2,3,...\\<br />x=\frac{2n\pi}{3} \pm \frac{\pi}{6} ,n=0,1,2,3,...

This is ignored since  \cos 3x \neq 0 .

The general solution of  \tan 3x=1 is

 3x=n\pi + \frac{\pi}{4} ,n=0,1,2,3,...\\<br />x=\frac{n\pi }{3}+ \frac{\pi}{12} ,n=0,1,2,3,...

To sum up the general solution of the given equation,

 x=\frac{n\pi }{3}+ \frac{\pi}{12},n=0,1,2,3,...

Similar questions