Math, asked by Rohanmenaria2006, 9 months ago

Solve the question
 \sqrt{63}  - 5 \sqrt{2p}  + 11 \sqrt{7}

Answers

Answered by Anonymous
30

⠀⠀\huge\underline{ \underline{ \bf{ \blue{ \: solution \: : =  }}}}

 \sqrt{63}  - 5 \sqrt{2p}  + 11 \sqrt{7}

 \bf \:3 \sqrt{7}  - 5 \sqrt{2p}  + 11 \sqrt{7}  \\  \\ 14 \sqrt{7}  - 5 \sqrt{2p}

______________________

SOLVE FOR P

Steps for Solving Linear Equation

⠀⠀⟹\sqrt { 63 } - 5 \sqrt { 2 } p + 11 \sqrt { 7 } = 0

view step

63=3^{2}\times 7

 \sqrt{3^{2}\times 7}=\sqrt{63}</p><p>

 \sqrt{3^{2}}\sqrt{7} =  \sqrt{63}

 3^{2}\approx 9

⠀⠀➠3\sqrt{7}-5\sqrt{2}p+11\sqrt{7}=0

⠀⠀➠</p><p>3\sqrt{7}-5\sqrt{2}p=-11\sqrt{7}

⠀⠀➠-5\sqrt{2}p=-11\sqrt{7}-3\sqrt{7}

⠀⠀➠\left(-5\sqrt{2}\right)p=-14\sqrt{7}</p><p>

⠀⠀➠\frac{\left(-5\sqrt{2}\right)p}{-5\sqrt{2}}=-\frac{14\sqrt{7}}{-5\sqrt{2}} =

⠀⠀➠p=-\frac{14\sqrt{7}}{-5\sqrt{2}}

⠀⠀⠀➠{\boxed{\fbox{\green{\bf{p=\frac{7\sqrt{14}}{5}}}}}}

Answered by StarrySoul
27

Correct Question :

 \sf \:  \sqrt{63}  - 5 \sqrt{28}  + 11 \sqrt{7}

Solution :

For solving these kind of questions,you need to bring all of them in their simple form.

We can write :

 \star  \sf \:   \sqrt{63} \:  \:  as \:  \:   \: \sqrt{9 \times 7}

 \star  \sf \:   \sqrt{28} \:  \:  as \:  \:   \: \sqrt{4 \times 7}

Let's put the value :

 \sf \: \longmapsto \:  \sqrt{9 \times 7}  - 5 \sqrt{4 \times 7}  + 11 \sqrt{7}

We know that :

 \star  \sf \:   \sqrt{9} \:  \: =  3

 \star  \sf \:   \sqrt{4} \:  \: =  2

Let's put the value :

 \sf \longmapsto  3 \sqrt{7}  - 5(2) \sqrt{7}  + 11 \sqrt{7}

 \sf \:  \longmapsto \: 3 \sqrt{7}  - 10 \sqrt{7}  + 11 \sqrt{7}

Here,7 is common. Let's take this out

 \sf \: \longmapsto \: (3 - 10 + 11) \sqrt{7}

We can add all those numbers except 7

 \longmapsto \sf \:(14 - 10)\sqrt{7}

\longmapsto \large \boxed{ \purple{ \sf \: 4 \sqrt{7}} }

Hence,Required Value is 4√7

Similar questions