Math, asked by Anonymous, 9 months ago

solve the question with explanation..​

Attachments:

Answers

Answered by Anonymous
12

AnswEr :

Given Expression,

 \sf \: z =  \dfrac{3 + 4 \imath}{4 - 5 \imath}

We have to find the Multiplicative Inverse of z

The product of a number and it's multiplicative inverse would be :

 \sf \: z \times  \dfrac{1}{z}  = 1

Let the Multiplicative Inverse be x

Thus,

 \longrightarrow \:  \sf \: x =  \dfrac{4 - 5 \imath}{3 + 4 \imath}

Multiplying the numerator and denominator with 3 - 4i ( Conjugate of 3 + 4i )

 \longrightarrow \:  \sf \: x =  \dfrac{(4  -  5 \imath)(3 - 4 \imath)}{(3 + 4 \imath)(3 - 4 \imath)}  \\  \\  \longrightarrow \:  \sf \: x =  \dfrac{12 - 31 \imath + 20 \imath {}^{2} }{ {3}^{2}  - (4 { \imath})^{2} }

Here,

  • i² = - 1

  • i = √-1

Now,

 \longrightarrow \:  \sf \: x =  \dfrac{(12  - 20) - 31 \imath}{9 + 16}  \\  \\  \longrightarrow \:   \boxed{ \boxed{\sf \: x =  -  \frac{1}{25} (8 + 31 \imath)}}

The general form of a complex number is :

 \sf \: z = a +  b\imath

Thus,

  •  \sf \: a =  -  \dfrac{8}{25}\\
  •  \sf \: b =  -  \dfrac{31 \imath}{25}

The correct option is (A)

Answered by Rajshuklakld
4

some important concept related to this question.....

I=√-1,,{so i^2=(-1)^( 2×1/2)=-1}

i^4=(i^2)^2=(-1)^2=1

now,lets move on question......

multiplicative inverse of (3+4i)/(4-5i)=(4-5i)/(3+4i)

now rationalize the denominator

(4-5i)(3-4i)/(3-4i)(3+4i)

=12-16i-15i-(5i×4i)/9-(4i)^2

=12+-31i-(-20)/{9-(-16)}

=12-31i-20/25

=-8-31i/25

=-8/25+ (-31/25)I

comparing it with

x+iy

we get

x=-8/25

y=-31/25

so coordinates are(-8/25,-31/25)

{hope it helps}

Similar questions