Math, asked by brainlyincia, 2 months ago

solve the question with explanation !!!! ​

Attachments:

Answers

Answered by MRDEMANDING
29

✮ Question ✮

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Prove :  \tt {\sqrt{ \dfrac{1 + sin \: \theta}{1 - sin \: \theta} } = sec \: \theta + tan \: \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Answer :-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

✮ Solving LHS ✮

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \sqrt{ \dfrac{1 + sin \: \theta}{1 - sin \: \theta} } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

✮ Rationalizing ✮

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \leadsto \sf { = \sqrt{ \dfrac{1 + sin \: \theta}{1 - sin \: \theta} \times \dfrac{1 + sin \: \theta}{1 + sin \: \theta} }}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\leadsto \sf {= \sqrt{ \dfrac{ {( 1 + sin \: \theta)}^{2} }{1 - {sin}^{2}\theta } }}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Identity : sin²∅ + cos²∅ = 1

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \leadsto { \sf {=\sqrt{ \dfrac{{(1 + sin \: \theta)}^{2} }{{cos}^{2} \theta} }} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\leadsto \sf {= \sqrt{{ \bigg( \dfrac{1 + sin \: \theta}{cos \: \theta} \bigg)}^{2} }}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \leadsto \sf{ =\dfrac{1}{cos \: \theta} + \dfrac{sin \: \theta}{cos \: \theta} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\leadsto \sf {=sec \: \theta + tan \: \theta }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence, Proved !

⠀⠀⠀

_______________________⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀


ItzArchimedes: Nice answer !
Answered by ItzArchimedes
71

We need to prove ,

  • \displaystyle\sf\sqrt{\dfrac{1+sin\theta}{1-sin\theta}} = sec\theta-tan\theta

Taking LHS and proving LHS = RHS

Rationalizing the denominator . To rationalize we need to multiply and divide with  \sf (1+sin\theta)

\displaystyle \longrightarrow\sf  \sqrt{\dfrac{(1+sin\theta)}{(1-sin\theta)}\times\dfrac{(1+sin\theta)}{(1+sin\theta)}}

\displaystyle\sf\longrightarrow\sqrt{\dfrac{(1+sin\theta)\times(1+sin\theta)}{(1-sin\theta)\times(1+sin\theta)}}

  • \sf (a+b)(a+b)=(a+b)^2
  • \sf (a-b)(a+b) = a^2-b^2

\displaystyle\sf\longrightarrow\sqrt{\dfrac{(1+sin\theta)^2}{1^2-sin^2\theta}}

 \displaystyle\sf\longrightarrow\dfrac{\sqrt{(1+sin\theta)^2}}{\sqrt{1-sin^2\theta}}

\displaystyle\sf\longrightarrow\dfrac{1+sin\theta}{\sqrt{cos^2\theta}}

\displaystyle\sf\longrightarrow\dfrac{1+sin\theta}{cos\theta}

\displaystyle\sf\longrightarrow\dfrac{1}{cos\theta}+\dfrac{sin\theta}{cos\theta}

\displaystyle\longrightarrow\textbf{\textsf{sec$\theta$+tan$\theta$}}

• LHS = RHS

Hence proved \green{\boldsymbol{\checkmark}}

Similar questions