Math, asked by arshan51, 1 year ago

solve the question with solution​

Attachments:

Answers

Answered by pratyush4211
3
Rationalising Factor of (a+b)=(a-b)

Question 2

 \frac{7 \sqrt{3} - 5 \sqrt{2} }{ \sqrt{48} + \sqrt{18} }

Rationalising Factor of √48+√18=√48-√18

Multiply the given by √48-√18

 \frac{(7 \sqrt{3} - 5 \sqrt{2} ) ( \sqrt{48} - \sqrt{18} )}{ (\sqrt{48} + \sqrt{18} )( \sqrt{48} - \sqrt{18}) } \\ \\ \frac{7 \sqrt{3}( \sqrt{48} - \sqrt{18} ) - 5 \sqrt{2} ( \sqrt{48} - \sqrt{18} ) }{ \sqrt{48} {}^{2} - \sqrt{18} {}^{2} } \\ \\ \frac{7 \sqrt{144} - 7 \sqrt{54} - 5 \sqrt{96} + 5 \sqrt{36} }{48 - 18} \\ \\ \frac{(7 \times 12 )- (7 \sqrt{2 \times 3 \times 3 \times 3}) - (5 \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 3}) + 5 \times 6 }{30} \\ \\ \frac{84 - 7 \times 3 \sqrt{2 \times 3} - 5 \times 2 \times 2 \sqrt{2 \times 3} + 30}{?} \\ \\ \frac{84 - 21 \sqrt{6} - 20 \sqrt{6 } + 30}{30} \\ \\ \frac{114 - 41 \sqrt{6} }{30}


Question 1 Answer is In Attachment.
Attachments:

pratyush4211: is it right
arshan51: yes
Similar questions
English, 7 months ago