Math, asked by krishna318, 1 year ago

solve the question with whole process in this app

Attachments:

Answers

Answered by skh2
0

 {3}^{x - 1}  =  {3}^{2}  \\ same \: base \: equating \: powers. \\ x - 1 = 2 \\ x = 2 + 1 = 3
 {4}^{y + 2}  =  {4}^{3}  \\ same \: base \: equating \: powers \\ y + 2 = 3 \\ y = 3 - 2 = 1
 \frac{y}{x}  -  \frac{x}{y}
= 1/3 - 3/1
Or, 1/3 - 3
= 1-9/3= 8/3 (taking lcm and solving).
Answered by BloomingBud
0
Hello............. ^_^

Here is your answer...

if \:  \:  {3}^{x - 1}  = 9 \:  \: and \:  \:  {4}^{y + 2}  = 64,find \:  \: the \:  \: value \:  \: of \:  \:  \frac{y}{x}  -  \frac{x}{y}  \\  \\ first \:  \: find \: \:  value \:  \: of \:  \: x \:  \: in  \: \:  {3}^{x - 1}  = 9 \\  \\  =  >  {3}^{x - 1}  = 9 \\  \\ 9 =  {3}^{2}  \\  \\  =  >  {3}^{x - 1}  =  {3}^{2}  \\ now \:  \: bases \:  \:are \:  \: same \:  \:  \\ now \:  \: equating \:  \: their \:  \: powers \\  =  > x - 1 = 2 \\  =  > x = 2 + 1 \\  =  > x = 3 \\  \\  value \:  \: of \:  \: x \:  = 3 \\  \\  \\ find \:  \: the \:  \: value \:  \: of \:  \: y \:  \: in \:  {4}^{y + 2}  = 64 \\  \\ =  >  {4}^{y + 2} = 64 \\  \\   64 =  {4}^{3}  \\  \\  =  >  {4}^{y + 2}  = {4}^{3}  \\  \\now \:  \: bases \:  \: are \:  \: same \: \\  now \: equating \:  \: their \:  \: powers \\  =  > y + 2 = 3 \\  =  > y = 3 - 2 \\  =  > y = 1 \\  \\ value \:  \: of \:  \: y \:  = 1 \\  \\  \\  \\ now \: finding \:  \: the \:  \: value \:  \: of \:  \:  \frac{y}{x}  -  \frac{x}{y}  \\  \\  =  \frac{1}{3}  -  \frac{3}{1}  \\   \\ (take \:  \: lcm \:  \: 3) \\  \\  =  \frac{1 - 9}{1 }  \\  \\  =   \frac{ - 8}{3}



Hope it helps........... ^_^
Similar questions