Math, asked by rathodanand77ar, 3 months ago

Solve the quratic equation 2x2 + 5x + 2 = 0 using formula method ​

Answers

Answered by Anonymous
9

Given Equation

\sf\to 2x^2+5x+2=0

Formula

\sf\to x=\dfrac{-b\pm\sqrt{b^2-4ac} }{2a}

Now Compare with

\sf\to ax^2+bx+c=0

We get

\sf\to a=1 , b = 5\: and\:c=2

Put the value on formula

\sf\to x=\dfrac{-5\pm\sqrt{(5)^2-4\times2\times2} }{2\times2}

\sf\to x=\dfrac{-5\pm\sqrt{25-16} }{4}

\sf\to x=\dfrac{-5\pm\sqrt{9} }{4}

\sf\to x = \dfrac{-5\pm3}{4}

\sf\to x=\dfrac{-5+3}{4} \: and \:\dfrac{-5-3}{4}

\sf\to x=\dfrac{-2}{4} \: and \: \dfrac{-8}{4}

\sf\to x= \dfrac{-1}{2} \:and\: x= -2

Answer

\sf\to x= \dfrac{-1}{2} \:and\: x= -2

Answered by ItzFadedGuy
26

Solution:

A quadratic equation is given in this question:

\displaystyle{\implies\sf\:2x^2+5x+2 = 0}

We need to solve it by using formula method.

By using formula method, we have:

\displaystyle{\pink{\sf\:x = \frac{-b \pm \sqrt{D}}{2a}}}

Here, D represents discriminant of the quadratic equation:

\displaystyle{\red{\sf\:D = b^2-4ac}}

where,

  • b = 5
  • a = 2
  • c = 2

\displaystyle{\implies\sf\:D = 5^2-4\: \times \: 2\: \times \:2 }

\displaystyle{\implies\sf\:D = 25-16}

\displaystyle{\green{\sf\:D = 9}}

Now, let us solve the quadratic equation by using quadratic formula:

\displaystyle{\implies{\sf\:x = \frac{-5 \pm \sqrt{9}}{2\: \times 2}}}

\displaystyle{\implies{\sf\:x = \frac{-5 \pm 3}{4}}}

\displaystyle{\implies{\sf\:x = \frac{-5 + 3}{4}}},\displaystyle{\implies{\sf\:x = \frac{-5 - 3}{4}}}

\displaystyle{\implies{\sf\:x = \frac{-2}{4}}},\displaystyle{\implies{\sf\:x = \frac{-8}{4}}}

\displaystyle{\implies{\underline{\boxed{\blue{\sf\:x = \frac{-1}{2},-2}}}}}

Hence, the quadratic equation is solved!

Similar questions