Math, asked by gitanshsbmn7367, 1 year ago

Solve the rational inequality
3/x-2<1

Answers

Answered by clockkeeper
1
 \frac{3}{x - 2} - 1 \: &lt; 0 \\ \frac{3 - x + 2}{x - 2} &lt; 0 \\ \frac{ - x + 5}{x - 2} &lt; 0 \\ or \: \: \: \: (\frac{x - 5}{x - 2} ) &gt; 0 \\ it \: is \: possible\: in \: two \: cases \\ case1. \: \: (x - 5) &gt; 0 \: \: \: and \: (x - 2) &gt; 0 \\ \: \: \: \: \: \: \: i.e. \: \: x &gt; 5 \: \: and \: \: x &gt; 2 \\ \: \: \: \: \: \: \: i.e. \: \: x &gt; 5 \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: or \\ case2. \: \: (x - 5) &lt; 0 \: \: and \: \: (x - 2) &lt; 0 \\ \: \: \: \: \: \: \: \: i.e. \: \: x &lt; 5 \: \: and \: \: x &lt; 2 \\ \: \: \: \: \: \: \: \: i.e. \: \: x &lt; 2 \\ \\ therefore \: to \: conclude \\ \: \: \: \: \: \: \: \: x€(-infinity,2)u(5,infinity)
Similar questions