Math, asked by mankathadanygmailcom, 8 months ago

Solve the recurrence relation s(k)-10s(k-1)+9s(k-2)=0 with n
s(0)=3,s(1)=11.

Answers

Answered by pulakmath007
20

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO SOLVE

The recurrence relation given by

 \sf{S_k - 10 S_{k - 1} + 9S_{k - 2} = 0 \: }

With initial conditions

 \sf{S_0  = 3 \:  \:  \: and \:  \:  \:  S_{ 1}   = 11\: }

CALCULATION

The given difference equation is

 \sf{S_k - 10 S_{k - 1} + 9S_{k - 2} = 0 \: }

This is a second order homogeneous difference equation with constant coefficients.

The corresponding auxiliary equation is

 \sf{  {x}^{2} - 10x + 9 = 0 \:  \: }

 \implies \:  \sf{  {x}^{2} - 9x - x + 9 = 0 \:  \: }

 \implies \:  \sf{ x(x - 9)- 1(x  -  9) = 0 \:  \: }

 \implies \:  \sf{ (x - 9)(x  -  1) = 0 \:  \: }

 \implies \:  \sf{ x = 1 \: ,  \:  \: 9 \:  \: }

Hence 1 & 9 are the roots of the auxiliary equation and the roots are distinct.

 \sf{So  \: there  \: exists \:  two \:  constants \:   t_1 \:  and \:  t_2 \:  such \:  that }

 \sf{S_k = t_1 \times  {(1)}^{k}  +  t_2 \times  {(9)}^{k} } \:  \:  \: for \: all \: k \geqslant 0

 \implies \:  \sf{S_k = t_1  +  t_2 \times  {(9)}^{k} } \:  \:  \: ........(1)

 \sf{ Now\:  \: S_0 =3  \:  \: \: gives \: \:  }

 \:  \sf{ t_1  +  t_2 \times  {(9)}^{0}  = 3}

 \implies \:  \sf{ t_1  +  t_2  = 3 } \:  \:  \: ........(2)

 \sf{ Now\:  \: S_1 =11  \:  \: \: gives \: \:  }

 \:  \sf{ t_1  +  t_2 \times  {(9)}^{1}  = 11}

 \implies \:  \sf{ t_1  + 9 t_2  = 11 } \:  \:  \: ........(3)

Now Equation (2) - Equation (2) gives

\:  \sf{ 8 t_2  = 8 } \:  \:  \:

 \implies \:  \sf{  t_2  = 1 } \:  \:  \:

From Equation (2)

 \implies \:  \sf{  t_1  = 3 - 1 } \:  \:  \:

 \implies \:  \sf{  t_1  = 2 } \:  \:  \:

Hence from Equation (1)

\sf{S_k = 2 +    {(9)}^{k} } \:  \:  \:

RESULT

The solution of the given recurrence relation is

 \boxed{\sf{ \:  \:  \: S_k = 2 +    {(9)}^{k} } \:  \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

A sequence {an} is defined recursively, with a1 = -1, and, for n > 1, an = an-1 + (-1)^n.

Find the first five terms

https://brainly.in/question/13458713

Similar questions