Math, asked by rajibdeydey433, 3 months ago

Solve the recurrence relation xn = xn−1 + 2n + 1 where x0 = 1​

Answers

Answered by shadowsabers03
5

We need to solve the recurrence relation,

\longrightarrow x_n=x_{n-1}+2n+1

Replacing n by k,

\longrightarrow x_k=x_{k-1}+2k+1

\longrightarrow x_k-x_{k-1}=2k+1

Taking summation in the limit from k=1 to n,

\displaystyle\longrightarrow\sum_{k=1}^n\left(x_k-x_{k-1}\right)=\sum_{k=1}^n(2k+1)

\displaystyle\longrightarrow\sum_{k=1}^nx_k-\sum_{k=1}^n x_{k-1}=2\sum_{k=1}^nk+\sum_{k=1}^n1

We know that,

  • \displaystyle\sum_{k=1}^nk=\dfrac{n(n+1)}{2}
  • \displaystyle\sum_{k=1}^n1=n

Then,

\displaystyle\longrightarrow\sum_{k=1}^nx_k-\sum_{k=1}^n x_{k-1}=2\cdot\dfrac{n(n+1)}{2}+n

\displaystyle\longrightarrow\sum_{k=1}^nx_k-\sum_{k=1}^n x_{k-1}=n^2+2n

But we see that,

  • \displaystyle\sum_{k=1}^nx_{k-1}=\sum_{k=0}^{n-1}x_k

Then,

\displaystyle\longrightarrow\sum_{k=1}^nx_k-\sum_{k=0}^{n-1} x_k=n^2+2n

Take,

  • \displaystyle\sum_{k=1}^nx_k=\sum_{k=1}^{n-1}x_k+x_n
  • \displaystyle\sum_{k=0}^{n-1}x_k=x_0+\sum_{k=1}^{n-1}x_k

Then,

\displaystyle\longrightarrow\left(\sum_{k=1}^{n-1}x_k+x_n\right)-\left(x_0+\sum_{k=1}^{n-1}x_k\right)=n^2+2n

\displaystyle\longrightarrow\sum_{k=1}^{n-1}x_k+x_n-x_0-\sum_{k=1}^{n-1}x_k=n^2+2n

\displaystyle\longrightarrow x_n-x_0=n^2+2n

\displaystyle\longrightarrow x_n=n^2+2n+x_0

Given that x_0=1.

\displaystyle\longrightarrow x_n=n^2+2n+ 1

\displaystyle\longrightarrow\underline{\underline{x_n=(n+1)^2}}

This is the general form of our recurrence relation.

Answered by Anonymous
2

\huge{\underline{\underline{\mathrm{\red{AnswEr}}}}}

We need to solve the recurrence relation,

\longrightarrow x_n=x_{n-1}+2n+1

Replacing n by k,

\longrightarrow x_k=x_{k-1}+2k+1

\longrightarrow x_k-x_{k-1}=2k+1

Taking summation in the limit from k=1 to n,

\displaystyle\longrightarrow\sum_{k=1}^n\left(x_k-x_{k-1}\right)=\sum_{k=1}^n(2k+1)

\displaystyle\longrightarrow\sum_{k=1}^nx_k-\sum_{k=1}^n x_{k-1}=2\sum_{k=1}^nk+\sum_{k=1}^n1

We know that,

\displaystyle\sum_{k=1}^nk=\dfrac{n(n+1)}{2}

\displaystyle\sum_{k=1}^n1=n

Then,

\displaystyle\longrightarrow\sum_{k=1}^nx_k-\sum_{k=1}^n x_{k-1}=2\cdot\dfrac{n(n+1)}{2}+n

\displaystyle\longrightarrow\sum_{k=1}^nx_k-\sum_{k=1}^n x_{k-1}=n^2+2n

But we see that,

\displaystyle\sum_{k=1}^nx_{k-1}=\sum_{k=0}^{n-1}x_k

Then,

\displaystyle\longrightarrow\sum_{k=1}^nx_k-\sum_{k=0}^{n-1} x_k=n^2+2n

Take,

\displaystyle\sum_{k=1}^nx_k=\sum_{k=1}^{n-1}x_k+x_n

\displaystyle\sum_{k=0}^{n-1}x_k=x_0+\sum_{k=1}^{n-1}x_k

Then,

\displaystyle\longrightarrow\left(\sum_{k=1}^{n-1}x_k+x_n\right)-\left(x_0+\sum_{k=1}^{n-1}x_k\right)=n^2+2n

\displaystyle\longrightarrow\sum_{k=1}^{n-1}x_k+x_n-x_0-\sum_{k=1}^{n-1}x_k=n^2+2n

\displaystyle\longrightarrow x_n-x_0=n^2+2n

\displaystyle\longrightarrow x_n=n^2+2n+x_0

Given that x_0=1.

\displaystyle\longrightarrow x_n=n^2+2n+ 1

\displaystyle\longrightarrow\underline{\underline{x_n=(n+1)^2}}

This is the general form of our recurrence relation.

Similar questions