Math, asked by hgabashmeet, 3 months ago

solve the second one as soon as possible​

Attachments:

Answers

Answered by Anonymous
5

{\large\orange{\mathbb\fcolorbox{pink}{maroon}{★Solution ★:-}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}:

  • PA is the Tangent.
  • AB is a Chord.

 \sf {\bold{\green{\underline{\underline{To \:  prove :-}}}}}

  • ∆ PAD is an isosceles Triangle
  • ∠CAD =  \frac{1}{2}  (∠ \: PBA -  \:  ∠PAB) \\

\sf {\bold{\green{\underline{\underline{Required  \: Solution :- }}}}}

So, PAB = C -----(1)

[Angle are alternate Segment ]

AD is the Bisector of ∠BAC

∠1 = ∠2 \:  \:  -  - (2)

In, ADC ,

Exterior ∠AOP = ∠C + ∠1

Exterior ∠ADP = ∠PAB+ ∠C \\ \implies∠PAD

Therefore,

PAD is an Isosceles triangle.

Now,

In a ABC

Exterior PBA = ∠C + ∠BAC

∠BAC = ∠PBA - ∠C

We can write it like this ,

 \boxed{∠1 +∠2 =  ∠PBA - ∠ PAB} \:

\sf\colorbox{green}{ From Equation 1st }

 \implies2∠ 1 = ∠ PAB  -∠ PAB \\  \implies∠1 =  \frac{1}{2}  (∠ PAB  -∠ PAB) \\  :  \implies\boxed{∠CAD  =  \frac{1}{2} (∠ PAB  -∠ PAB)}

☆ Hence Proved!!

_____________________________

\sf\blue{hope \: this \: helps \: you!! \: }

@Mahor2111

_________♬♩♪♩ ♩♪♩♬__________

Answered by vaishnavisinghscpl45
1

⟹2∠1=∠PAB−∠PAB

⟹∠1= 21 (∠PAB−∠PAB)

:⟹ ∠CAD= 21 (∠PAB−∠PAB)

Similar questions