Math, asked by utkarsh8687, 9 months ago

Solve the simultaneos quadratic inequations. x^{2}+5x+4>0 and-(x)^{2}-x-42>0

Answers

Answered by Anonymous
3

GIVEN:

★Two simultaneous quadratic inequations.

x^{2}+5x+4>0

-(x)^{2}-x+42>0

TO FIND:

★The range of values of x.

CONCEPT USED:

★We will solve the inequalities simultaneous and find out the critical points.

ANSWER:

Taking first equation,

=>x^{2}+5x+4>0

on factorising,

=>x^{2}+x+4x+4>0

=>x(x+1) +4(x+1) >0

=>(x+1) (x+4) >0

. °. x>-1, x>-4

On drawing number line,

<--+ve------><----(-ve) ------><------+ve---->

<||>

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:-4\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: -1

We would have to look for positive regions,

So,

\large\green{\boxed{x\epsilon(-∞,-4) U(-1,∞)}}.........(1)

________________________________________

Again,

=>-(x)^{2}-x+42&gt;0

=>-(x^{2}+x-42) &gt;0

=>x^{2}+x-42) &lt;0

=>x^{2}+7x-6x-42&lt;0

=>x(x+7) -6(x+7) &lt;0

=>(x+7) (x-6) &lt;0

On drawing number line,

<--+ve------><----(-ve) ------><------+ve---->

<——————|————————|—————>

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:-7\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: 6

Hence,

\large\red{\boxed{x\epsilon(-7, 6)}} .............. (2)

________________________________________

From (1)&(2),we have;

x\epsilon(-7,-4)U(-1,6)

\huge\orange{\boxed{x\epsilon(-7,-4)U(-1,6)}}

Answered by rishuranjan64
0

Answer in attachment........,.....

Attachments:
Similar questions