Math, asked by ssimar863, 5 hours ago

Solve the simultaneous equation 2x+3y=13,3x+2y=12 by application of matrix

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{Equations are}

\mathsf{2x+3y=13,\;3x+2y=12}

\underline{\textbf{To find:}}

\textsf{The solution by matrix inversio method}

\underline{\textbf{Solution:}}

\textsf{The given  equations can be wrtitten as}

\mathsf{\left(\begin{array}{cc}2&3\\3&2\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{c}13\\12\end{array}\right)}

\implies\mathsf{AX=B}

\implies\mathsf{X=A^{-1}B}

\mathsf{|A|=\left|\begin{array}{cc}2&3\\3&2\end{array}\right|}

\mathsf{|A|=4-9=-5\;{\neq}\;0}

\implies\;\mathsf{A^{-1}\;exists}

\mathsf{adj\,A=\left(\begin{array}{cc}2&-3\\-3&2\end{array}\right)}

\mathsf{A^{-1}=\dfrac{1}{|A|}adj\,A}

\mathsf{A^{-1}=\dfrac{1}{-5}\left(\begin{array}{cc}2&-3\\-3&2\end{array}\right)}

\mathsf{Now,}

\mathsf{X=A^{-1}B}

\mathsf{X=\dfrac{1}{-5}\left(\begin{array}{cc}2&-3\\-3&2\end{array}\right)\left(\begin{array}{c}13\\12\end{array}\right)}

\mathsf{X=\dfrac{1}{-5}\left(\begin{array}{c}26-36\\-39+24\end{array}\right)}

\mathsf{X=\dfrac{1}{-5}\left(\begin{array}{c}-10\\-15\end{array}\right)}

\mathsf{X=\left(\begin{array}{c}2\\3\end{array}\right)}

\mathsf{\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{c}2\\3\end{array}\right)}

\therefore\textbf{The solution is x=2 and y=3}

\underline{\textbf{Find more:}}

x + y + z = 6, 3x - y + 3z = 10, 5x + 5y - 4z = 3.

[Find A-¹ using adjoint method.]​

https://brainly.in/question/30325696

Solve be matrix inversion method

x-3y-8z+10=0

3x+y=4

2x+5y+6z=13​

https://brainly.in/question/21075691

Similar questions