Math, asked by shindesl1981, 4 days ago

solve the simultaneous equation
3a+5b=26;a+5b=22

Answers

Answered by priyajanbandhu
2

Answer:

3a+5b=26 - a+5b=22

=2a=4

=a=4/2

a=2 put in equation 1st

3x2+5b=26

6+5b=26

5b=26-6

5b=20

b=20/5

b=4

Step-by-step explanation:

plz mark mi in brainlist & follow mi for your answers

Answered by mathdude500
72

\large\underline{\sf{Solution-}}

Given pair of linear equation is

\rm :\longmapsto\:3a + 5b = 26 -  -  - (1)

and

\rm :\longmapsto\:a + 5b = 22 -  -  - (2)

On Subtracting equation (2) from equation (1), we get

\rm :\longmapsto\:2a = 4

\bf\implies \:a = 2

On substituting the value of a in equation (2), we get

\rm :\longmapsto\:2 + 5b = 22

\rm :\longmapsto\:5b = 22 - 2

\rm :\longmapsto\:5b = 20

\bf\implies \:b \:  =  \: 4

So,

\bf\implies \:\boxed{ \bf{ \:\begin{gathered}\begin{gathered}\bf\: Solution \: is \: \begin{cases} &\sf{a = 2} \\  \\ &\sf{b = 4} \end{cases}\end{gathered}\end{gathered} \:  \:  \:  \:  \:  \:  \: }}

Alternative Method :-

Given pair of linear equations is

\rm :\longmapsto\:3a + 5b = 26 -  -  - (1)

and

\rm :\longmapsto\:a + 5b = 22 -  -  - (2)

From equation (2), we have

\rm :\longmapsto\: 5b = 22 - a

Substituting this value in equation (1), we get

\rm :\longmapsto\:3a+ 22 - a = 26

\rm :\longmapsto\:2a+ 22 = 26

\rm :\longmapsto\:2a = 26 - 22

\rm :\longmapsto\:2a = 4

\bf\implies \:a = 2

On substituting the value of a in equation (3), we get

\rm :\longmapsto\:5b = 22 - 2

\rm :\longmapsto\:5b = 20

\bf\implies \:b = 4

So,

\bf\implies \:\boxed{ \bf{ \:\begin{gathered}\begin{gathered}\bf\: Solution \: is \: \begin{cases} &\sf{a = 2} \\  \\ &\sf{b = 4} \end{cases}\end{gathered}\end{gathered} \:  \:  \:  \:  \:  \:  \: }}

Similar questions