Math, asked by premvasanth7300, 1 month ago

Solve the simultaneous equation 3x-2y=10;4x+3y=5

Answers

Answered by MasterDhruva
13

Solution :-

 \sf \leadsto 3x - 2y = 10 - - - (i)

 \sf \leadsto 4x + 3y = 5 - - - (ii)

By first equation,

 \sf \leadsto 3x - 2y = 10

 \sf \leadsto 3x = 10 + 2y

 \sf \leadsto x = \dfrac{10 + 2y}{3}

Now, we can find the original value of y.

 \sf \leadsto 4x + 3y = 5

 \sf \leadsto 4 \bigg( \dfrac{10 + 2y}{3} \bigg) + 3y = 5

 \sf \leadsto \dfrac{40 + 8y}{3} + 3y = 5

 \sf \leadsto \dfrac{40 + 8y + 9y}{3} = 5

 \sf \leadsto \dfrac{40 + 17y}{3} = 5

 \sf \leadsto 40 + 17y = 5(3)

 \sf \leadsto 40 + 17y = 15

 \sf \leadsto 17y = 15 - 40

 \sf \leadsto 17y =  - 25

 \sf \leadsto y = \dfrac{ - 25}{17}

Now, we can find the original value of x.

 \sf \leadsto 3x - 2y = 10

 \sf \leadsto 3x - 2 \bigg( \dfrac{ - 25}{17} \bigg) = 10

 \sf \leadsto 3x + \dfrac{50}{17} = 10

 \sf \leadsto \dfrac{51x + 50}{17} = 10

 \sf \leadsto 51x + 50 = 10(17)

 \sf \leadsto 51x + 50 = 170

 \sf \leadsto 51x = 170 - 50

 \sf \leadsto 51x = 120

 \sf \leadsto x = \dfrac{120}{51}

Therefore, the values of x and y are 120/51 and -25/17 respectively.

Similar questions