Math, asked by oyinkansola, 1 month ago

solve the simultaneous equation log2(x)+log2(y)=4 log2(x)+2log2(y)=3​

Answers

Answered by varadad25
22

Question:

Solve the simultaneous equations:

\displaystyle{\sf\:\log_2\:(\:x\:)\:+\:\log_2\:(\:y\:)\:=\:4}

\displaystyle{\sf\:\log _2\:(\:x\:)\:+\:2\:\log_2\:(\:y\:)\:=\:3}

Answer:

The solution of the given simultaneous equations is

\displaystyle{\boxed{\red{\sf\:(\:x\:,\:y\:)\:=\:\left(\:32\:,\:\dfrac{1}{2}\:\right)\:}}}

Step-by-step-explanation:

We have given logarithmic simultaneous equations.

The given simultaneous equations are

\displaystyle{\sf\:\log_2\:(\:x\:)\:+\:\log_2\:(\:y\:)\:=\:4\:\quad\cdots(\:1\:)}

\displaystyle{\sf\:\log _2\:(\:x\:)\:+\:2\:\log_2\:(\:y\:)\:=\:3\:\quad\cdots(\:2\:)}

Now,

\displaystyle{\sf\:\log_2\:(\:x\:)\:+\:\log_2\:(\:y\:)\:=\:4\:\quad\cdots(\:1\:)}

\displaystyle{\implies\sf\:log_2\:(\:xy\:)\:=\:4}

We know that,

\displaystyle{\sf\:2^4\:=\:16}

\displaystyle{\implies\sf\:\log_2\:(\:2^4\:)\:=\:\log_2\:(\:16\:)}

\displaystyle{\implies\sf\:4\:\log_2\:(\:2\:)\:=\:\log_2\:(\:16\:)\:\qquad\cdots\:[\:\log_a\:(\:b^k\:)\:=\:k\:\log_a\:(\:b\:)\:]}

\displaystyle{\implies\sf\:4\:=\:\log_2\:(\:16\:)}

By using this value, we get,

\displaystyle{\sf\:log_2\:(\:xy\:)\:=\:4}

\displaystyle{\implies\sf\:\log_2\:(\:xy\:)\:=\:\log_2\:(\:16\:)}

By taking antilog to the base 2 on both sides,

\displaystyle{\implies\sf\:xy\:=\:16}

\displaystyle{\implies\sf\:x\:=\:\dfrac{16}{y}\:\qquad\cdots(\:3\:)}

Now,

\displaystyle{\sf\:\log _2\:(\:x\:)\:+\:2\:\log_2\:(\:y\:)\:=\:3\:\quad\cdots(\:2\:)}

\displaystyle{\implies\sf\:\log_2\:(\:x\:)\:+\:\log_2\:(\:y^2\:)\:=\:3\:\qquad\cdots\:[\:k\:\log_a\:(\:b\:)\:=\:\log_a\:(\:b^k\:)\:]}

\displaystyle{\implies\sf\:\log_2\:(\:xy^2\:)\:=\:3}

We know that,

\displaystyle{\sf\:2^3\:=\:8}

\displaystyle{\implies\sf\:\log_2\:(\:2^3\:)\:=\:\log_2\:(\:8\:)}

\displaystyle{\implies\sf\:3\:\log_2\:(\:2\:)\:=\:\log_2\:(\:8\:)\:\qquad\cdots\:[\:\log_a\:(\:b^k\:)\:=\:k\:\log_a\:(\:b\:)\:]}

\displaystyle{\implies\sf\:3\:=\:\log_2\:(\:8\:)}

By using this value, we get,

\displaystyle{\sf\:log_2\:(\:xy^2\:)\:=\:3}

\displaystyle{\implies\sf\:\log_2\:(\:xy^2\:)\:=\:\log_2\:(\:8\:)}

By taking antilog to the base 2 on both sides,

\displaystyle{\implies\sf\:xy^2\:=\:8}

\displaystyle{\implies\sf\:\dfrac{16}{y}\:\times\:y^2\:=\:8\:\qquad\cdots[\:From\:(\:3\:)\:]}

\displaystyle{\implies\sf\:\dfrac{16}{\cancel{y}}\:\times\:\cancel{y}\:\times\:y\:=\:8}

\displaystyle{\implies\sf\:16y\:=\:8}

\displaystyle{\implies\sf\:y\:=\:\cancel{\dfrac{8}{16}}}

\displaystyle{\implies\boxed{\pink{\sf\:y\:=\:\dfrac{1}{2}\:}}}

By substituting this value in equation ( 3 ), we get,

\displaystyle{\implies\sf\:x\:=\:\dfrac{16}{y}\:\qquad\cdots(\:3\:)}

\displaystyle{\implies\sf\:x\:=\:\dfrac{16}{\dfrac{1}{2}}}

\displaystyle{\implies\sf\:x\:=\:16\:\times\:2}

\displaystyle{\implies\boxed{\blue{\sf\:x\:=\:32\:}}}

∴ The solution of the given simultaneous equations is

\displaystyle{\underline{\boxed{\red{\sf\:(\:x\:,\:y\:)\:=\:\left(\:32\:,\:\dfrac{1}{2}\:\right)\:}}}}

Similar questions