Math, asked by gurveersingh07112018, 5 days ago

solve the simultaneous equations by t method of elimination
 \frac{x}{2}  +  \frac{y}{3}  = 1 \\  \frac{x}{3}  +  \frac{y}{2}  = 1

Answers

Answered by mathdude500
25

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm \: \dfrac{x}{2}  + \dfrac{y}{3}  = 1 -  -  - (1) \\

and

\rm \: \dfrac{x}{3}  + \dfrac{y}{2}  = 1 -  -  - (2) \\

So, equation (1) can be rewritten as

\rm \: \dfrac{x}{2}  + \dfrac{y}{3}  = 1 \\

\rm \: \dfrac{3x + 2y}{6}  = 1 \\

\rm \: 3x + 2y = 6 -  -  - (3) \\

Now, Equation (2) can be rewritten as

\rm \: \dfrac{2x + 3y}{6}   =  1 \\

\rm \: 2x + 3y = 6 -  -  - (4) \\

Now, multiply equation (3) by 2 and (2) by 3, we get

\rm \: 6x + 4y = 12 -  -  - (5) \\

\rm \: 6x + 9y = 18 -  -  - (6) \\

On Subtracting equation (5) from (6), we get

\rm \: 5y = 6 \\

\rm\implies \:y = \dfrac{6}{5}  -  -  - (7)\\

On substituting the value of y in equation (3) we get

\rm \: 2x + 3 \times \dfrac{6}{5} = 6 \\

\rm \: 2x + \dfrac{18}{5} = 6 \\

\rm \: 2x  = 6  - \dfrac{18}{5} \\

\rm \: 2x  = \dfrac{30 - 18}{5} \\

\rm \: 2x  = \dfrac{12}{5} \\

\rm\implies \:\rm \: x  = \dfrac{6}{5} \\

So, required solution is

\rm \: x \:  =  \: \dfrac{6}{5} \\

and

\rm \: y \:  =  \: \dfrac{6}{5} \\

Verification

Consider equation (1)

\rm \: \dfrac{x}{2}  + \dfrac{y}{3}  = 1  \\

On substituting the values of x and y, we get

\rm \: \dfrac{6}{2 \times 5}  + \dfrac{6}{3 \times 5}  = 1  \\

\rm \: \dfrac{3}{5}   + \dfrac{2}{5}   = 1  \\

\rm \: \dfrac{3 + 2}{5}= 1  \\

\rm \: \dfrac{5}{5}= 1  \\

\rm \: 1= 1  \\

Hence, Verified

Answered by jinnibha0gat
11

Answer:

x = 6/5

y = 6/5

Step-by-step explanation:

Given,

x/2 + y/3 = 1 ----- (i)

x/3 + y/2 = 1​ ----- (ii)

Equating (i) and (ii),

x/2 + y/3 = x/3 + y/2

(3x + 2y)/6 = (2x + 3y)/6

3x + 2y = 2x + 3y

x = y ----- (iii)

Substituting the value of x in (i)

y/2 + y/3 = 1

(3y + 2y)/6 = 1

5y = 6

y = 6/5

x = 6/5

Similar questions