Math, asked by siddharthprasad371, 5 hours ago

Solve the simultaneous equations :-

x + y \div xy = 3 \\ x - y \div xy = 1

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:\dfrac{x + y}{xy} = 3

and

\rm :\longmapsto\:\dfrac{x -  y}{xy} = 1

Above equations can be rewritten as

From first equation

\rm :\longmapsto\:\dfrac{x + y}{xy} = 3

\rm :\longmapsto\:\dfrac{x}{xy}  + \dfrac{y}{xy}  = 3

\rm :\longmapsto\:\dfrac{1}{y}  + \dfrac{1}{x}  = 3 -  -  - (1)

And from Second equation

\rm :\longmapsto\:\dfrac{x -  y}{xy} = 1

\rm :\longmapsto\:\dfrac{x}{xy} -  \dfrac{y}{xy}  = 1

\rm :\longmapsto\:\dfrac{1}{y} -  \dfrac{1}{x}  = 1 -  -  -  - (2)

Now, On adding equation (1) and (2), we get

\rm :\longmapsto\:\dfrac{2}{y} = 3 + 1

\rm :\longmapsto\:\dfrac{2}{y} = 4

\rm :\longmapsto\:y = \dfrac{2}{4}

\bf\implies \:\:y = \dfrac{1}{2}

Now, on Subtracting equation (2) from equation (1) we have

\rm :\longmapsto\:\dfrac{2}{x} = 3 - 1

\rm :\longmapsto\:\dfrac{2}{x} = 2

\rm :\longmapsto\:x = \dfrac{2}{2}

\bf\implies \:x = 1

Hence,

Solution of Simultaneous linear equations are

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{x = 1}  \\ \\ &\sf{y = \dfrac{1}{2} } \end{cases}\end{gathered}\end{gathered}

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \:solve \: for :  \\ values \: of \: x \: and \: y \\  \\ given \: linear \: equations \: are \\   \frac{x + y}{xy}  = 3 \:  \:  \:  \:  \:  \:  \: (1) \\  \\  \frac{x - y}{xy}  = 1 \:  \:  \:  \:  \:  \: (2) \\  \\ applying \: now \:  \:  \frac{(1)}{(2)}  \\ we \: get \\  \\  \frac{x + y}{x - y}  =  \frac{3}{1}  \\  \\ using \: componendo \: dividendo \\ we \: get \\  \\  \frac{x + y + x - y}{x + y - (x - y)}  =  \frac{3 + 1}{3 - 1}  \\  \\  \frac{x + x}{y + y}  =  \frac{4}{2}  \\  \\  \frac{2x}{2y}  = 2 \\  \\ x = 2y \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (3)

substituting \: value \: of \: x \: in \: (1) \\ we \: have \\  \\  \frac{x + y}{xy}  = 3  \\  \\  \frac{2y + y}{xy}  = 3 \\  \\  \frac{3y}{xy}  = 3 \\  \\  \frac{1}{x}  = 1 \\  \\ x = 1 \\  \\ on \: substituting \: value \: of \: x \: in \: (3) \\ we \: have \\  \\ y =  \frac{1}{2}

hence \: here \:  \\ (x,y) = (1, \frac{1}{2}  \: )

Similar questions