solve the simultaneous equations.
x+y=2
4y^2-x^2=11
Answers
Answered by
0
The solution set = { (1/3, 5/3), (5, -3) }
Step-by-step explanation:
Given :
From (i) substitute x = 2 - y in equation (ii) we get,
When y = 5/3, x = 2 - 5/3 = 1/3
when y = -3, x = 2 - (-3) = 5
Hence, the solution set = { (1/3, 5/3), (5, -3) }
Answered by
0
Answer:
x=5,y=-3 and x=1/3,y=5/3
Step-by-step explanation:
x+y=2
x=2-y===>1
4y²-x²=11==>2
Substitute equation 1 in equation 2
4y²-(2-y)²=11
4y²-(2²-2(2)(y)+y²)=11
4y²-(4-4y+y²)=11
4y²-4+4y-y²=11
3y²+4y-4=11
3y²+4y-4-11=0
3y²+4y-15=0
a=3
b=4
c=-15
Product=a×c=3×(-15)=-45
Sum=b=4
9×(-5)=-45
9-5=4
3y²+9y-5y-15=0
3y(y+3)-5(y+3)=0
(y+3)(3y-5)=0
y+3=0
y=-3
3y-5=0
3y=5
y=5/3
Substitute Y in equation 1
x=2-y
x=2-(-3) --->(y=-3)
x=5,y=-3
x=2-y
y=5/3
x=2-5/3
x=(6-5)/3
x=1/3,y=5/3
Similar questions