Math, asked by DWilliams297, 6 months ago

Solve the simultaneous equations
y = 9-X
y = 2x(squared) + 4x + 6​

Answers

Answered by sayangamer948
1

Answer:

The solution of the given two simultaneous equation

A( 3 ,6) and B(\frac{1}{2} ,\frac{17}{2} )B(

2

1

,

2

17

)

The intersecting points of given two simultaneous equations are

A( 3 ,6) and B(\frac{1}{2} ,\frac{17}{2} )B(

2

1

,

2

17

)

Step-by-step explanation:

Explanation:-

Step(i):-

Given simultaneous equation

y = 9-x ...(i)

y = 2 x² +4 x+6 ..(ii)

Equating (i) and (ii) equations , we get

9 -x = 2 x² +4 x+6

⇒ 2 x² +4 x + 6- 9 +x =0

⇒ 2 x² + 5 x - 3 =0

⇒ 2 x² +6 x -x -3 =0

⇒ 2 x ( x +3) -1 ( x+3) =0

⇒ (2 x -1 ) ( x+3) =0

⇒ (2 x -1 ) = 0 and ( x +3 ) =0

2 x =12x=1 and x = -3

x = 1/2 and x =3

Step(ii):-

x = 3 ⇒ y = 9 - 3 =6

A( 3 ,6)

x = \frac{1}{2} , y = 9 - \frac{1}{2} = \frac{17}{2}x=

2

1

,y=9−

2

1

=

2

17

B(\frac{1}{2} ,\frac{17}{2} )B(

2

1

,

2

17

)

Final answer:-

The intersecting points of two simultaneous equations are

A( 3 ,6) and B(\frac{1}{2} ,\frac{17}{2} )B(

2

1

,

2

17

)

The solution of the given two simultaneous equation

A( 3 ,6) and B(\frac{1}{2} ,\frac{17}{2} )B(

2

1

,

2

17

)

Similar questions