Solve the simultaneous equations
y = 9-X
y = 2x(squared) + 4x + 6
Answers
Answer:
The solution of the given two simultaneous equation
A( 3 ,6) and B(\frac{1}{2} ,\frac{17}{2} )B(
2
1
,
2
17
)
The intersecting points of given two simultaneous equations are
A( 3 ,6) and B(\frac{1}{2} ,\frac{17}{2} )B(
2
1
,
2
17
)
Step-by-step explanation:
Explanation:-
Step(i):-
Given simultaneous equation
y = 9-x ...(i)
y = 2 x² +4 x+6 ..(ii)
Equating (i) and (ii) equations , we get
9 -x = 2 x² +4 x+6
⇒ 2 x² +4 x + 6- 9 +x =0
⇒ 2 x² + 5 x - 3 =0
⇒ 2 x² +6 x -x -3 =0
⇒ 2 x ( x +3) -1 ( x+3) =0
⇒ (2 x -1 ) ( x+3) =0
⇒ (2 x -1 ) = 0 and ( x +3 ) =0
2 x =12x=1 and x = -3
x = 1/2 and x =3
Step(ii):-
x = 3 ⇒ y = 9 - 3 =6
A( 3 ,6)
x = \frac{1}{2} , y = 9 - \frac{1}{2} = \frac{17}{2}x=
2
1
,y=9−
2
1
=
2
17
B(\frac{1}{2} ,\frac{17}{2} )B(
2
1
,
2
17
)
Final answer:-
The intersecting points of two simultaneous equations are
A( 3 ,6) and B(\frac{1}{2} ,\frac{17}{2} )B(
2
1
,
2
17
)
The solution of the given two simultaneous equation
A( 3 ,6) and B(\frac{1}{2} ,\frac{17}{2} )B(
2
1
,
2
17
)