Math, asked by padmajanPix, 1 year ago

solve the solution 1+4+7+10.............+x = 287

Answers

Answered by oshoraa
920
Sn = n/2(2a+(n-1)d)  given a=1, d=4-1=3 & Sn = 287
287 = n/2 (2*1 +(n-1) 3)  
287*2 = n(2 + 3n - 3)
574 = 2n + 3n^2 - 3n
3n^2 -n - 574 = 0
on solving the quadratic equation using formula n= -b + sq.root(b^2 -4ac)
                                                                            -----------------------
                                                                                          2a
we get   n = 14,  -41/3  n not equal to  -41/3 due to negative nos.
n=14
Sn = n/2 (a +l)
287 = 14/2(1 +x)
574 = 14 (1+x)
574 / 14 = 1+x
41 = 1 + x
So, x = 41 - 1
      x = 40 is the solution
Answered by VishalSharma01
407

Answer:

Step-by-step explanation:

Solution :-

Here, a = 1,

and d = 4 - 1 = 2,

S(n) = n

Let n be the number of terms.

We know that,

S(n) = n/2[2a + (n - 1)d]

Putting all the values, we get

⇒ 287 = n/2[2 × 1 + (n - 1) (3)]

⇒ 287 = n/2[2 + (n - 1)3]

⇒ 574 = 3n² - n

3n² - n - 574 = 0

⇒ 3n² - 42n + 41n - 574 = 0

⇒ 3n(n - 14) + 41(n - 14) = 0

n = 14, - 41/3 (As n can't be negative)

n = 14

We know that,

a + (n - 1)d = x

⇒ 1 + (14 - 1) (3) = 3

⇒ 1 + 13 (3) = 3

x = 40.

Hence, the value of x is 40.

Similar Questions :-

brainly.in/question/1598066

brainly.in/question/2055545

brainly.in/question/7843085

brainly.in/question/8518595

brainly.in/question/3227946

Similar questions