solve the solution 1+4+7+10.............+x = 287
Answers
Answered by
920
Sn = n/2(2a+(n-1)d) given a=1, d=4-1=3 & Sn = 287
287 = n/2 (2*1 +(n-1) 3)
287*2 = n(2 + 3n - 3)
574 = 2n + 3n^2 - 3n
3n^2 -n - 574 = 0
on solving the quadratic equation using formula n= -b + sq.root(b^2 -4ac)
-----------------------
2a
we get n = 14, -41/3 n not equal to -41/3 due to negative nos.
n=14
Sn = n/2 (a +l)
287 = 14/2(1 +x)
574 = 14 (1+x)
574 / 14 = 1+x
41 = 1 + x
So, x = 41 - 1
x = 40 is the solution
287 = n/2 (2*1 +(n-1) 3)
287*2 = n(2 + 3n - 3)
574 = 2n + 3n^2 - 3n
3n^2 -n - 574 = 0
on solving the quadratic equation using formula n= -b + sq.root(b^2 -4ac)
-----------------------
2a
we get n = 14, -41/3 n not equal to -41/3 due to negative nos.
n=14
Sn = n/2 (a +l)
287 = 14/2(1 +x)
574 = 14 (1+x)
574 / 14 = 1+x
41 = 1 + x
So, x = 41 - 1
x = 40 is the solution
Answered by
407
Answer:
Step-by-step explanation:
Solution :-
Here, a = 1,
and d = 4 - 1 = 2,
S(n) = n
Let n be the number of terms.
We know that,
S(n) = n/2[2a + (n - 1)d]
Putting all the values, we get
⇒ 287 = n/2[2 × 1 + (n - 1) (3)]
⇒ 287 = n/2[2 + (n - 1)3]
⇒ 574 = 3n² - n
⇒ 3n² - n - 574 = 0
⇒ 3n² - 42n + 41n - 574 = 0
⇒ 3n(n - 14) + 41(n - 14) = 0
⇒ n = 14, - 41/3 (As n can't be negative)
⇒ n = 14
We know that,
a + (n - 1)d = x
⇒ 1 + (14 - 1) (3) = 3
⇒ 1 + 13 (3) = 3
⇒ x = 40.
Hence, the value of x is 40.
Similar Questions :-
brainly.in/question/1598066
brainly.in/question/2055545
brainly.in/question/7843085
brainly.in/question/8518595
brainly.in/question/3227946
Similar questions