Math, asked by frankelboy, 9 months ago

Solve the sum with quadric equations .

Attachments:

Answers

Answered by Aloi99
1

Question:-

Solve the Equation:-

 \frac{x-1}{x+2} + \frac{x-3}{x-4} =3 \frac{1}{3}

 \frac{x-1}{x+2} + \frac{x-3}{x-4} = \frac{10}{3}

Answer:-

★Cross Multiplying LHS★

 \frac{(x-1)(x-4)+(x+2)(x-3)}{(x+2)(x-4)} = \frac{10}{3}

 \frac{x^{2}-4x-x+4+x^{2}-3x+2x-6}{x^{2}-4x+2x-8} = \frac{10}{3}

 \frac{2x^{2}-6x-2}{x^{2}-2x-8}  \frac{10}{3}

★Cross Multiply LHS and RHS★

→6x²-18x-6=10x²-20x-80

→10x²-6x²-20x+18x-80+6

→4x²-2x-74

\rule{200}{1}

★Solving using Discriminant Formula★

→d=b²-4ac

a=4,b=(-2),c=(-74)

→(-2)²-4×4×(-74)

→4+1184

→1188=d

→√d=±√1188

→√d=±6√33

★Check Attachment for Factorization of √1188★

\rule{200}{1}

•Taking(+)= \frac{-b+ \sqrt{d}}{2a}

→x= \frac{-(-2)+6 \sqrt{33}}{2×4}

→x= \frac{2+6 \sqrt{33}}{8}

→x= \frac{\cancel{2}(1+3 \sqrt{33}}{\cancel{8})}

→x= \frac{1+3 \sqrt{33})}{4}

\rule{200}{1}

•Taking(-)= \frac{-b- \sqrt{d}}{2a}

→x= \frac{-(-2)-6 \sqrt{33}}{2×4}

→x= \frac{2-6 \sqrt{33}}{8}

→x= \frac{\cancel{2}(1-3 \sqrt{33})}{\cancel{8}}

→x= \frac{1-3 \sqrt{33})}{4}

\rule{200}{8}

Attachments:
Similar questions