Computer Science, asked by PRANAVPRADEEP9867, 5 days ago

Solve the system of equation by Gauss elimination method: x + y + z = 2 2x - y + 3z =16 x + y - z = -3

Answers

Answered by shaikashu001
0

Answer:

x=8/3

y=-19/6

z=5/2

Explanation:

please mark my answers as brainilest

Attachments:
Answered by saikrishnamohapatra5
0

Answer:

Given:

x + y + z = 7

3x + 3y + 4z = 24

2x + y + 3z = 16

To find:

Solve the system of equation by Gauss elimination method.

Solution:

x + y + z = 7

3x + 3y + 4z = 24

2x + y + 3z = 16

\begin{gathered}\left[\begin{array}{ccc}1&1&1 \ | \ 7 \\3&3&4 \ \ | \ 24\\2&1&3 \ \ | \ 16\end{array}\right]\end{gathered}

1

3

2

1

3

1

1 ∣ 7

4 ∣ 24

3 ∣ 16

R₂ - 3R₁ → R₂ ; R₃ - 2R₁ → R₃

\begin{gathered}\left[\begin{array}{ccc}1&1&1 \ \ | \ 7 \\0&0&1 \ \ | \ 3\\0&-1&1 \ \ | \ 2\end{array}\right]\end{gathered}

1

0

0

1

0

−1

1 ∣ 7

1 ∣ 3

1 ∣ 2

R₂ ↔ R₃

\begin{gathered}\left[\begin{array}{ccc}1&1&1 \ \ | \ 7 \\0&-1&1 \ \ | \ 2\\0&0&1 \ \ | \ 3\end{array}\right]\end{gathered}

1

0

0

1

−1

0

1 ∣ 7

1 ∣ 2

1 ∣ 3

R₂ / -1 → R₂

\begin{gathered}\left[\begin{array}{ccc}1&1&1 \ | \ 7 \\0&1&-1 \ \ | \ -2\\0&0&1 \ | \ 3\end{array}\right]\end{gathered}

1

0

0

1

1

0

1 ∣ 7

−1 ∣ −2

1 ∣ 3

R₁ - R₂ → R₁

\begin{gathered}\left[\begin{array}{ccc}1&0&2 \ | \ 9 \\0&1&-1 \ \ | \ -2\\0&0&1 \ | \ 3\end{array}\right]\end{gathered}

1

0

0

0

1

0

2 ∣ 9

−1 ∣ −2

1 ∣ 3

R₁ - 2R₃ → R₁ ; R₂ + R₃ → R₂

\begin{gathered}\left[\begin{array}{ccc}1&0&0 \ | \ 3 \\0&1&0 \ | \ 1 \\0&0&1 \ | \ 3\end{array}\right]\end{gathered}

1

0

0

0

1

0

0 ∣ 3

0 ∣ 1

1 ∣ 3

x = 3

y = 1

z = 3

Similar questions