Math, asked by aarshhssojatwala, 2 months ago

solve the system of equations 2x+3y=17 3x-2y=6 by the method of cross multiplication​

Answers

Answered by Blossomfairy
21

Given :

  • 2x + 3y = 17
  • 3x - 2y = 6

To Find :

  • The value of 'x' and 'y'

According to the question,

  • 2x + 3y - 17 = 0
  • 3x - 2y - 6 = 0

 \\

  : \implies\sf{ \dfrac{x}{(b_{1}c_{2} -b _{2}c_{1})} } =  \dfrac{y}{(c_{1}a_{2} - c_{2}a_{1})}  =  \dfrac{1}{(a_{1}b_{2} - a_{2}b_{1})}

 \\

  :  \implies \sf{ \dfrac{x}{3 \times ( - 6) -  ( - 2) \times ( - 17)} } =  \dfrac{y}{( - 17) \times 3 - ( - 6) \times 2}  =  \dfrac{1}{2 \times ( - 2) - 3 \times 3}

 \\

 :  \implies\sf{  \dfrac{x}{ - 18 - 34} } =  \dfrac{y}{ - 51 + 12}  =  \dfrac{1}{ - 4 - 9}

 \\

 :  \implies \sf{ \dfrac{x}{ - 52} =  \dfrac{y}{ - 39} =   \dfrac{1}{ - 13}   }

 \\

 :  \implies \sf{ \dfrac{x}{ - 52}  =  \dfrac{1}{ - 13} } \longrightarrow{x = 4}  \red \bigstar

 \\

 :  \implies \sf{ \dfrac{y}{ - 39} =  \dfrac{1}{ - 13}  } \longrightarrow y = 3 \:  \blue \bigstar

 \\

  • Hence, the value of x = 4 and y = 3.
Answered by nandni827
7

Answer:

Step-by-step explanation:

2x+3y=17                        ----[1]

3x-2y=6                           ---[2]

now write it as:-

2x+3y-17=0                      ----[3]

3x-2y-6=0                        ----[4]

now our values will be---

a_{1} = 2\\b_{1}=  3\\c_{1} =-17            

------------  

a_{2}=3\\b_{2}=-2\\c_{2}= -6

apply the values on the formula given below

\frac{x}{c1b2-c2b1} = \frac{y}{b1a2-b2a1}=\frac{1}{a1c2-a2c1}

after applying the values

\frac{x}{(-17*-2)-(-6*3)} = \frac{y}{(3*3)-(-2*2)} = \frac{1}{(2*-6)-(3*-17)}                       {note: first solve the                        

                                                                                                number  in the    

                                                                                                  brackets}  

now after getting the values

\frac{x}{52}=\frac{y}{13} = \frac{1}{-39}

now substitute the vaules of x and y with 1

=>\frac{x}{52}= \frac{1}{-39} \\=>x= \frac{1}{-39} *52 =\frac{52}{-39} \\=>x= \frac{4}{3}

------------------

=>\frac{y}{13}= \frac{1}{-39} \\=>y=\frac{1}{39} *13=\frac{13}{-39} \\=>y=\frac{1}{3}

ans==> x=4/3, y=1/3      

Similar questions