Math, asked by arathip21, 1 month ago

solve the system of equations 3x+y-z=3,-x+y+z=1,x+y+z=3​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given system of equations are

\rm :\longmapsto\:3x + y - z = 3

\rm :\longmapsto\: - x + y  + z = 1

\rm :\longmapsto\: x + y  + z = 3

We use Cramer's Rule to solve this system of equations.

The matrix form of the above system of equations is

\rm :\longmapsto\:A \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}3&1& - 1\\ - 1&1&1\\1&1&1\end{array}\right]\end{gathered}

\begin{gathered}\sf\rm :\longmapsto\: B=\left[\begin{array}{c}3\\1\\3\end{array}\right]\end{gathered}

\begin{gathered}\sf\rm :\longmapsto\: X=\left[\begin{array}{c}x\\y\\z\end{array}\right]\end{gathered}

Now,

Consider,

\rm :\longmapsto\:A \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}3&1& - 1\\ - 1&1&1\\1&1&1\end{array}\right]\end{gathered}

So,

\rm :\longmapsto\: |A|  = \begin{gathered}\sf \left | \begin{array}{ccc}3&1& - 1\\ - 1& 1&1\\1&1& 1\end{array}\right | \end{gathered}

\rm \:  =  \:  \: 3(1 - 1) - 1( - 1 - 1) - 1( - 1 - 1)

\rm \:  =  \:  \: 0 + 2 + 2

\rm \:  =  \:  \: 4

Now, |A| is non - zero, it means system of equations have unique solution.

So,

\rm :\longmapsto\:D_1 = \begin{gathered}\sf \left | \begin{array}{ccc}3&1& - 1\\ 1& 1&1\\3&1& 1\end{array}\right | \end{gathered}

\rm \:  =  \:  \: 3(1 - 1) - 1(1 - 3) - 1(1 - 3)

\rm \:  =  \:  \: 0 + 2 + 2

\rm \:  =  \:  \: 4

Now,

\rm :\longmapsto\:D_2 = \begin{gathered}\sf \left | \begin{array}{ccc}3&3& - 1\\ - 1& 1&1\\1&3& 1\end{array}\right | \end{gathered}

\rm \:  =  \:  \: 3(1 - 3) - 3( - 1 - 1) - 1( - 3 - 1)

\rm \:  =  \:  \:  - 6 + 6 + 4

\rm \:  =  \:  \: 4

Now,

\rm :\longmapsto\:D_3 = \begin{gathered}\sf \left | \begin{array}{ccc}3&1&3\\ - 1& 1&1\\1&1& 3\end{array}\right | \end{gathered}

\rm \:  =  \:  \: 3(3 - 1) - 1( - 3 - 1) + 3( - 1 - 1)

\rm \:  =  \:  \: 6 + 4 - 6

\rm \:  =  \:  \: 4

So, we have now

 \red{\rm :\longmapsto\: |A| = 4}

 \red{\rm :\longmapsto\:D_1 = 4}

 \red{\rm :\longmapsto\:D_2 = 4}

 \red{\rm :\longmapsto\:D_3 = 4}

Now, using Cramer's rule,

\blue{\bf :\longmapsto\:x = \dfrac{D_1}{ |A| }  = \dfrac{4}{4} = 1}

\blue{\bf :\longmapsto\:y = \dfrac{D_2}{ |A| }  = \dfrac{4}{4} = 1}

\blue{\bf :\longmapsto\:z = \dfrac{D_3}{ |A| }  = \dfrac{4}{4} = 1}

Hence,

The solution of system of equations is

  • x = 1

  • y = 1

  • z = 1

Answered by pushpajha7654
0

Step-by-step explanation:

x = 1

y = 1

z = 1 this is the answer

Similar questions