Math, asked by iamgurleen001, 7 months ago

Solve the system of equations by using determinants
g-3h+j=-7
-4g-6j=4
2g+3h+2j-4=0​

Answers

Answered by tyrbylent
0

Answer:

(- 1, 2, 0)

Step-by-step explanation:

g - 3h + j = - 7

- 4g + 0h - 6j = 4

2g + 3h + 2j = 4

A=\left[\begin{array}{ccc}1&-3&1\\-4&0&-6\\2&3&2\end{array}\right] = 18

A_{g} = \left[\begin{array}{ccc}-7&-3&1\\4&0&-6\\4&3&2\end{array}\right] =-18

A_{h} = \left[\begin{array}{ccc}1&-7&1\\-4&4&-6\\2&4&2\end{array}\right] =36

A_{j} =\left[\begin{array}{ccc}1&-3&-7\\-4&0&4\\2&3&4\end{array}\right] =0

g = \frac{A_{g} }{A} = - 1

h = \frac{A_{h} }{A} = 2

j = 0

(- 1, 2, 0)

Similar questions