Math, asked by reddeeraj29, 1 day ago

Solve the system of equations X+3y-2z=0,x-11y+14z=0,2x-y+4z=0​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given system of equations are

\rm \: x + 3y - 2z = 0 \\

\rm \: x - 11y + 14z = 0 \\

\rm \: 2x -y + 4z = 0 \\

The matrix representation of the equation is

\rm \: \begin{gathered}\sf\left[\begin{array}{ccc} 1&3&  - 2\\1& - 11&14\\2& - 1&4\end{array}\right]\end{gathered} \begin{gathered}\sf \left[\begin{array}{c}x\\y \\ z\end{array}\right] \end{gathered} = \begin{gathered}\sf \left[\begin{array}{c}0\\0\\0\end{array}\right] \end{gathered} \\

where,

\rm \: A = \begin{gathered}\sf\left[\begin{array}{ccc} 1&3&  - 2\\1& - 11&14\\2& - 1&4\end{array}\right]\end{gathered} \\

\rm \: X = \begin{gathered}\sf \left[\begin{array}{c}x\\y \\ z\end{array}\right] \end{gathered} \\

\rm \: B = \begin{gathered}\sf \left[\begin{array}{c}0\\0\\ 0\end{array}\right] \end{gathered} \\

so that,

\rm \: AX = B

Now, Consider

\rm \:  |A|

\rm \:  =  \: \begin{gathered}\sf\left | \begin{array}{ccc} 1&3&  - 2\\1& - 11&14\\2& - 1&4\end{array}\right | \end{gathered} \\

\rm \:  =  \: 1( - 44 + 14) - 3(4 - 28) - 2( - 1 + 22) \\

\rm \:  =  \:  - 30  + 72 - 42 \\

\rm \:  =  \: 0 \\

\rm\implies \: |A|  = 0 \\

It means, system of equations is consistent having infinitely many solutions.

Let assume that z = k, where k is some real number.

Now, we choose any two equations from given system of equations and substitute z = k.

So, the above two equations can be rewritten as

\rm \: x + 3y = 2k \\

and

\rm \: 2x -y =  - 4k \\

So,

Matrix representation of the system is

\rm \: \bigg[ \begin{matrix}1&3 \\ 2& - 1 \end{matrix} \bigg]\begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right] \end{gathered} = \begin{gathered}\sf \left[\begin{array}{c}2k\\ - 4k\end{array}\right] \end{gathered}

Now, using Cramer's Rule,

Consider,

\rm \:  |A|  =  - 1 - 6 =  - 7 \\

It means, system of equations is consistent having unique solution.

\rm \: D_1  = \begin{array}{|cc|}\sf 2k &\sf 3  \\ \sf  - 4k &\sf  - 1 \\\end{array} =  - 2k + 12k = 10k

\rm \:  D_2  = \begin{array}{|cc|}\sf 1 &\sf 2k  \\ \sf 2 &\sf  - 4k \\\end{array} =  - 4k - 4k =  - 8k

So,

\rm\implies \:x = \dfrac{D_1}{ |A| }  = \dfrac{10k}{ - 7}  =  - \dfrac{10k}{7}  \\

and

\rm\implies \:y = \dfrac{D_2}{ |A| }  = \dfrac{ - 8k}{ - 7}  = \dfrac{8k}{7}  \\

So, solution of given system of equations is

\rm \: x =  - \dfrac{10k}{7} \: where \: k \:  \in \: R \\

\rm \: y = \dfrac{8k}{7} \: where \: k \:  \in \: R \\

\rm \: z = k \: where \: k \:  \in \: R \\

Answered by maheshtalpada412
1

Step-by-step explanation:

Here the number of unknowns is 3 .

Transforming into echelon form (Gaussian elimination method), the augmented matrix becomes

\left[\begin{array}{ccc|c}1 & 3 & -2 & 0 \\ 2 & -1 & 4 & 0 \\ 1 & -11 & 14 & 0\end{array}\right] \stackrel{R_{2} \rightarrow R_{2}-2 R_{1},}{R_{1} \rightarrow R_{1}-R_{1}}

\left[\begin{array}{ccc|c}1 & 3 & -2 & 0 \\ 0 & -7 & 8 & 0 \\ 0 & -14 & 16 & 0\end{array}\right] \stackrel{\begin{array}{l}R_{1} \rightarrow R_{1}+(-1) \\ R_{1} \rightarrow R_{1}+(-2)\end{array}}{ -  -  -  -  -  -  -  - \longrightarrow}

Similar questions