Math, asked by funnymovements2005, 3 months ago

solve the system of the linear equations x+2y=1,y+z=6,13z=52

Answers

Answered by HDabarwas
1

Step-by-step explanation:

find z value

and put in eq. 2

Attachments:
Answered by Seafairy
291

{\boxed {x=-3,y=2,z=4}}

{\large{\text{\underline{\underline{\red{Given :}}}}}}

x+2y=1

y+z=6

13z=52

{\large{\text{\underline{\underline{\red{To Find :}}}}}}

x,y,z

{\large{\text{\underline{\underline{\red{Solution :}}}}}}

\text{Let}

x+2y=1.....(1)

y+z=6.....(2)

13z=52.....(3)

{\text{\purple{Evaluate (3)}}}

13z=52\implies z=\frac{52}{13}

{\boxed {z=4}}

{\purple{\text{Substitute the value of z in (2)}}}

y+z=6 \implies y+4=6

y=6-4

{\boxed{y=4}}

{\text{\purple{Substitute the value of y in (1)}}}

x+2y=1\implies x+2(2)=1

x+4=1\implies x=1-4

{\boxed{x=-3}}

{\large{\text{\underline{\underline{\red{Verification :}}}}}}

x=-3,y=2,z=4

\implies x+2y=1\\\implies -3+2(2)=1\\\implies-3+4=1 \\\implies1 = 1

\implies y+z=6\\\implies 2+4=6\\\implies 6=6

\implies 13z=52\\\implies 13(4)=52\\\implies 52=52

{\pink{\textbf{Hence verified }}}

Similar questions