Math, asked by barojwngsar75, 3 months ago

solve the the pair of linear equations by the elemination method 3y/2-5x/3 =-2 and y/3+x/3 = 13 / 16​

Answers

Answered by Anonymous
6

\huge\purple{\boxed{\underline{ANSWER}}}

GIVEN THAT:

➨ There are two liner equation

➞ \:  \:  \frac{3y}{2}  -  \frac{5x}{3}  =  - 2 \:  \:  \:  \:  \:  \: \:  \:   (1) \\  \\ ➞ \:  \:  \frac{y}{3}  +  \frac{x}{3}  =  \frac{13}{16}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

SOLUTIONS:

➨ Equation (1)

➞ \:  \:  \frac{3y}{2}  -  \frac{5x}{3}  =  - 2 \\ \\  &#10142 \:  \:  \frac{9y - 10x}{6}  =  - 2 \\  \\ &#10142 \:  \: 9y - 10x =  - 12

➨ Equation (2)

➞ \:  \:  \frac{y}{3}  +  \frac{x}{3}  =  \frac{13}{16}  \\  \\ &#10142 \:  \:  \frac{y + x}{3}  =  \frac{13}{16}  \\  \\ &#10142 \:  \: x + y =  \frac{39}{16}  \:  \:

➨ From Equation (2)

➞ \:  \: x =  \frac{39}{16} - y

➨ Now putting the value of x in equaton (1)

&#10142 \:  \: 9y - 10( \frac{39}{16}  - y) =  - 12 \\  \\ &#10142 \:  \: 9y -  \frac{390}{16}  + 10y =  - 12 \\  \\ &#10142 \:  \: 19y =  \frac{390}{16}  - 12 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10142 \:  \: 19y =  \frac{390 - 192}{16}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10142 \:  \: 19y =  \cancel\frac{198}{16}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10142 \:  \:  \: y =  \frac{99}{8 \times 19}  =  \frac{99}{152}  \:  \:  \:  \:  \:  \:  \:  \:

➨ Now putting the value of y in equaton (2)

&#10142 \:  \: x =  \frac{39}{16} -  \frac{99}{152}   \\  \\ &#10142 \:  \: x =  \frac{741 - 198}{304}  \\  \\ &#10142 \:  \: x =  \frac{543}{304}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions