solve the trigonometry question for me
Attachments:
Answers
Answered by
1
Given--->
x Sinθ / a - y Cosθ / b = 1
x Cosθ / a + ySinθ / b = 1
To prove ----> x² / a² + y² / b² = 1
Proof---> ATQ,
x Sinθ / a - yCosθ / b = 1 ...............(1)
x Cosθ / a + y Sinθ / b = 1 ................(2)
Squaring equation(1) and (2) and then adding
( xSinθ/a - yCosθ/b )² + ( xCosθ/a + ySinθ/b)²
= 1² + 1²
We have an identiy, as follows
( a + b )² = a² + b² + 2ab, applying it here ,we get,
=> x²Sin²θ/a² + y²Cos²θ/b² - 2xySinθ Cosθ / ab
+ x²Cos²θ/a² + y²Sin²θ/b²+2xySinθCosθ/ab =2
=> x²/a² (Sin²θ +Cos²θ) + y²/b² ( Sin²θ+Cos²θ )= 2
We know that , Sin²A + Cos²A = 1 , applying it here , we get,
=> x² / a² ( 1 ) + y² / b² ( 1 ) = 2
=> x² / a² + y² / b² = 2
Similar questions