Math, asked by SnowHeartMehak, 12 hours ago

solve The value of 3n-2/r (1+2+3+...+ n), where n is a positive integer, is​

Answers

Answered by mannuv389
1

Answer:

know that

(1+x)

3n

=1+

3n

C

1

.x+

3n

C

2

.x

2

+...+

3n

C

3n

.x

3n

...(1)

(1−x)

3n

=1−

3n

C

1

.x+

3n

C

2

.x

2

−...+(−1)

3n

C

3n

.x

3n

...(2)

Subtracting (2) from (1), we get

(1+x)

3n

−(1−x)

3n

=2[

3n

C

1

.x+

3n

C

3

.x

3

+

3n

C

5

.x

5

+...]

=2[

3n

C

1

+

3n

C

3

.x+

3n

C

5

.x

4

+...]

Putting x=i

3

, we get

(1+i

3

)

3n

−(1−i

3

)

3n

=2i

3

[

3n

C

1

−3.

3n

C

3

+3

3

.

3n

C

5

+....]

3n

C

1

−3.

3n

C

3

+3

3

.

3n

C

5

+....=

2i

3

1

[(1+i

3

)

3n

−(1−i

3

)

3n

]

=

2i

3

1

.2

3n

(

2

1

+

2

i

3

)

3n

−(

2

1

2

i

3

)

3n

=

i

3

2

3n−1

[(cosnπ+isinnπ)−(cosnπ−isinnπ)]

=

i

3

2

3n−1

2isinnπ=0 as n is an integer

Similar questions