Math, asked by TheLifeRacer, 1 year ago

Solve the very important 12th board VVI question ​

Attachments:

Answers

Answered by kaushik05
49

  \huge\mathfrak{solution}

Given:

y = 5cos \: x - 3sinx \:

To prove:

 \frac{ {d}^{2} y}{d {x}^{2} }   + y = 0

Differentiate Y w.r.t x , we get

 \frac{dy}{dx}  =  \frac{d}{dx} 5cosx - 3sinx \\  \\  =  - 5sinx - 3cosx

Again differentiate w.r.t. X

 \frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{d}{dx} ( - 5sinx - 3cosx) \\  \\  =  \: - 5cosx  + 3sinx \\  \\  \:  =  - (5 \: cosx - 3 \: sinx) \\  \\  =  - y

So,

 \implies \:  \frac{ {d}^{2} y}{d {x}^{2} }  =  - y \\  \\  \implies \frac{ {d}^{2}y }{d {x}^{2} }  + y = 0

Proved .

Formula used :

 \frac{d}{dx} sin \: x = cosx  \\  \\  \frac{d}{dx} cosx =  - sinx

Answered by Anonymous
15

❏ Used Formulas

\sf\longrightarrow \frac{d \sin x}{dx}=\cos x

\sf\longrightarrow \frac{d \cos x}{dx}=-\sin x

\sf\longrightarrow \frac{d \tan x}{dx}=\sec{}^{2} x

\sf\longrightarrow \frac{d \cot x}{dx}=-\cosec{}^{2} x

\sf\longrightarrow \frac{d \sec x}{dx}=\sec x\tan x

\sf\longrightarrow \frac{d \cosec x}{dx}=-\cosec x\cot x

❏ Solution

Q)

if y=5\cos x-3\sin x then,

prove that, \frac{d{}^{2}y}{dx{}^{2}}+y=0

Ans)

\sf\longrightarrow y=5\cos x-3\sin x

\sf\longrightarrow \frac{dy}{dx}=5(-\sin x)-3(\cos x)

\sf\longrightarrow \frac{d{}^{2}y}{dx{}^{2}}= -5\cos x+3\sin x

\sf\longrightarrow \frac{d{}^{2}y}{dx{}^{2}}+( 5\cos x-3\sin x)=0

\sf\longrightarrow\boxed{ \frac{d{}^{2}y}{dx{}^{2}}+y=0\:(proved)}

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

#answerwithquality & #BAL

Similar questions