Math, asked by Melnick17, 9 months ago

solve the word problem​

Attachments:

Answers

Answered by amitkumar44481
5

Question :

The speed of a boat in still water is 15 km/hr. It goes 30 km upstream and return downstream to the original point in 4 hrs 30 minutes. Find the speed of the stream.

Answer:

The speed of the stream is 5 km/h

Solution :

Let the speed of stream be x km/hr.

So,

upstream = 15 -x.

downstream = 15 +x.

We know,

Distance = Speed * Times.

 \:  \: \boxed{ \tt \: d = s \times t.}

 \leadsto \tt 30 = (15 - x) \times t  \\</p><p>\leadsto \tt \frac{ 30}{(15  - x)} =  t.

And,

 \leadsto \tt30 = (15  +  x) \times t. \\ \leadsto \tt  \frac{  30}{ (15 + x) }= t.

According to Question,our equation become

 \:  \:  \tt \frac{30}{15 + x}  +  \frac{30}{15 - x}  = 4 \times \frac{30}{60} \\</p><p>\leadsto \tt \frac{30}{15 + x}  +  \frac{30}{15 - x}  =  \frac{9}{2} \\</p><p>\leadsto \tt \frac{30(15 - x) + (15 + x)30}{{15 }^{2}   -  {x}^{2} }   =  \frac{9}{2} \\</p><p>\leadsto \tt \frac{450 - 30x + 450 + 30x}{225 -  {x}^{2} }   =  \frac{9}{2} \\</p><p>\leadsto \tt \frac{450  \cancel{- 30x} + 450 +  \cancel{30x}}{225 -  {x}^{2} }   =  \frac{9}{2} \\</p><p>\leadsto \tt  \cancel{1800} =  \cancel9(225 -  {x}^{2} ) \\</p><p>\leadsto \tt 200 = 225 -  {x}^{2}  \\  \leadsto  \tt25 =  {x}^{2} \\</p><p>\leadsto \tt x =  \pm5.

Speed never be negative so,take x= 5 km/h.

Therefore,the speed of the stream be 5 km/h.

Similar questions