Solve these!!!!!!!!!!!!!!!!!!
Attachments:
Answers
Answered by
19
1) tan13x = tan( 4x + 9x)
= { tan4x + tan9x }/{ 1- tan4x .tan9x }
tan13x ( 1- tan4x .tan9x ) = tan4x + tan9x
tan13x - tan4x.tan9x .tan13x = tan4x + tan9x
tan13x = tan4x + tan9x + tan4x.tan9x.tan13x
hence proved .
2) LHS =
cos2x.cos2y + sin²( x -y) - sin²( x + y)
= cos2x.cos2y + { sin(x -y)+sin( x -y)}{ sin(x -y) -sin(x + y)}
use formula,
sinA + sinB = 2sin(A+ B)/2.cos( A-B)/2
sinA - sinB = 2sin(A-B)/2 .cos(A+B)/2
= cos2x.cos2y + { 2sin( x-y+x+y)/2.cos(x-y-x-y)}{ 2sin(x-y-x-y)/2.cos(x-y+x+y)/2}
=cos2x.cos2y + { 2sinx.cos(-y)}{2sin(-y).cosx }
= cos2x.cos2y - { 2sinx.cosx}{2siny.cosy}
=cos2x.cos2y - { sin2x }{sin2y}
=cos2x.cos2y - sin2x.sin2y
=cos( 2x +2y) = RHS
= { tan4x + tan9x }/{ 1- tan4x .tan9x }
tan13x ( 1- tan4x .tan9x ) = tan4x + tan9x
tan13x - tan4x.tan9x .tan13x = tan4x + tan9x
tan13x = tan4x + tan9x + tan4x.tan9x.tan13x
hence proved .
2) LHS =
cos2x.cos2y + sin²( x -y) - sin²( x + y)
= cos2x.cos2y + { sin(x -y)+sin( x -y)}{ sin(x -y) -sin(x + y)}
use formula,
sinA + sinB = 2sin(A+ B)/2.cos( A-B)/2
sinA - sinB = 2sin(A-B)/2 .cos(A+B)/2
= cos2x.cos2y + { 2sin( x-y+x+y)/2.cos(x-y-x-y)}{ 2sin(x-y-x-y)/2.cos(x-y+x+y)/2}
=cos2x.cos2y + { 2sinx.cos(-y)}{2sin(-y).cosx }
= cos2x.cos2y - { 2sinx.cosx}{2siny.cosy}
=cos2x.cos2y - { sin2x }{sin2y}
=cos2x.cos2y - sin2x.sin2y
=cos( 2x +2y) = RHS
Answered by
14
Answer is in the pic......
Attachments:
Similar questions