Math, asked by sohampanda287, 9 months ago

Solve these? and explain​

Attachments:

Answers

Answered by mahasri75
1

Step-by-step explanation:

1)

sin30•sin60•sin90

1/2•√3/2•1

√3/4•1

√3/4

2)

2+√3•√3•1•1/√3•1/2+√3

(2√3+3)•(1/2√3+3)

=1

Hope it helps

Mark me as a brainalist

Answered by lalnunkimahmarjoute
0

1)\frac{1}{2\sqrt{2}} \: or \:  {2}^{ -  \frac{3}{2} }

2)1

Step-by-step explanation:

1)  \sin3x \times \sin6x \times \sin9x

\:  \:  \:  \:  \: when \:  x = 10\degree,

\:  \:  \:  \:  \: \sin30\degree \times \sin60\degree \times \sin90\degree

\:  \:  \:  \:  \:  \frac{1}{2}   ×   \frac{1}{ \sqrt{2} }   ×  1

\:  \:  \:  \:  \:  \frac{1}{2 \sqrt{2} }

2) \cot15\degree × \cot30\degree × \cot45\degree × \cot60\degree × \cot75\degree

\:  \:  \:  \:  \:  \cot(45\degree - 30\degree)  \times  \sqrt{3}  \times 1 \times  \frac{1}{ \sqrt{3}} \times  \cot(45\degree + 30\degree)

 \:  \:  \:  \:  \:  \frac{ \cot(45\degree)  \cot(30\degree)  + 1}{ \cot(30\degree)  -  \cot(45\degree) }  \times  \frac{ \cot(45\degree)  \cot(30\degree)  - 1}{ \cot(30\degree)  +  \cot(45\degree) }

 \:  \:  \:  \:  \:  \frac{1 \times  \sqrt{3}  + 1}{ \sqrt{3}  - 1}  \times  \frac{1 \times  \sqrt{3}  - 1}{ \sqrt{3}  + 1}

 \:  \:  \:  \:  \:  \frac{3 - 1}{3 - 1}

 \:  \:  \:  \:  \: 1

Similar questions