Math, asked by vkkarnal321, 2 months ago

solve these equation by elimination method​

Attachments:

Answers

Answered by DEAGONGAMER
0

Answer:

I don't know no no no no no no no no no I don't know no no yenno

Answered by GeniusAnswer
16

\large\bf\underline\red{Answer  \: :-}

Given :-

  • \sf{ \frac{4}{x} + 3y = 8 }  \\
  • \sf{ \frac{6}{x}  - 4y =  - 5} \\

To find :-

  • x and y

Solution :-

First,

\rightarrow\sf{ \frac{4}{x} + 3y = 8 }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \rightarrow\sf{x + 3y =  \frac{8}{4} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \rightarrow\sf{x + 3y = 2} \:  \:  \:  \: ...(1)

Second,

\rightarrow\sf{ \frac{6}{x} - 4y =  - 5 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rightarrow\sf{6 - 4y =  - 5x} \:  \:  \:  \:  \:   \:  \: \:  \\  \\ \rightarrow\sf{5x + 4y = 6} \:  \:  \: ...(2)

Multiplying equation (1) by 5

We get,

5x + 15y = 10 ...(3)

Subtract equation (2) from (3)

\longmapsto\sf{5x + 15y - ( 5x + 4y ) = 10 - 6} \\ \longmapsto\sf{5x + 15y - 5x - 4y = 4} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \longmapsto\sf{11y = 4} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \longmapsto\sf{y =  \boxed{ \frac{4}{11} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

y = 4/11 putting in equation (1)

\longmapsto\sf{x + 3 \bigg( \frac{4}{11} \bigg) = 2 } \\  \\ \longmapsto\sf{x +  \frac{12}{33} = 2 } \\  \\ \longmapsto\sf{x =  2 -  \frac{33}{12} } \\  \\ \longmapsto\sf{x =  \frac{24 - 33}{12} } \\  \\ \longmapsto\sf{ x = \frac{9}{12} } \\  \\ \longmapsto\sf{x =  \boxed{ \frac{3}{4}} }

______________________________

Similar questions