Solve these
I will mark as brainliest
Attachments:
Answers
Answered by
1
1)
To prove:(sec∅+tan∅-1)/(tan∅-sec∅+1)=cos∅/(1-sin∅)
take LHS
=>we know,sec^2∅-tan^2∅=1,,,put this value in numerator...
=>[sec∅+tan∅-{sec^2∅-tan^2∅}]/(tan∅-sec∅+1)
=>[sec∅+tan∅-(sec∅+tan∅)(sec∅-tan∅)]/(tan∅-sec∅+1)
=>taking sec∅+tan∅ common from numerator,we get
{(sec∅+tan∅)(1-sec∅+tan∅)}/(tan∅-sec∅+1)}
=>1-sec∅+tan∅ will be cancelled out from numerator and denominator
we get as
sec∅+tan∅=LHS......i)
now,take RHS
=>Divide numerator and denominator ,by cos∅
=>1/(1/cos∅-sin∅/cos∅)
=>1/(sec∅-tan∅)
=>now,divide numerator and denominator by sec∅+tan∅
=>(sec∅+tan∅)(sec^2∅-tan^2∅)
=>sec∅+tan∅=RHS.....ii)
from i) and ii) we can say
LHS=RHS
{Hence proved}
{hope it helps}
Similar questions