Math, asked by nakulbansa3, 10 months ago

solve these please. ​

Attachments:

Answers

Answered by BrainlyPopularman
54

GIVEN :

  \\  \sf \: { \huge{.}} \:  \:  {x}^{4} +  \dfrac{1}{ {x}^{4} } = 2207   \\

TO FIND :

  \\  \sf \: { \huge{.}} \:  \:  {x}^{3} +  \dfrac{1}{ {x}^{3} } = ?   \\

SOLUTION :

  \\  \sf \implies  {x}^{4} +  \dfrac{1}{ {x}^{4} } = 2207   \\

• Using identity –

  \\  \sf \longrightarrow \:  {(a + b)}^{2}  =  {a}^{2} +  {b}^{2} + 2ab \\

• We should write this as –

  \\  \sf \implies \left[{x}^{2} +  \dfrac{1}{ {x}^{2} } \right]^{2}  - 2( {x}^{2}) \left( \dfrac{1}{ {x}^{2} }  \right) = 2207   \\

  \\  \sf \implies \left[{x}^{2} +  \dfrac{1}{ {x}^{2} } \right]^{2}  - 2= 2207   \\

  \\  \sf \implies \left[{x}^{2} +  \dfrac{1}{ {x}^{2} } \right]^{2}= 2207  + 2  \\

  \\  \sf \implies \left[{x}^{2} +  \dfrac{1}{ {x}^{2} } \right]^{2}= 2209  \\

  \\  \sf \implies {x}^{2} +  \dfrac{1}{ {x}^{2} } =  \sqrt{2209}  \\

  \\  \sf \implies {x}^{2} +  \dfrac{1}{ {x}^{2} } = \pm  \sqrt{2209}  \\

  \\  \sf \implies {x}^{2} +  \dfrac{1}{ {x}^{2} } = \pm 47 \\

• Here (-ve) value is not possible , So that –

  \\  \sf \implies {x}^{2} +  \dfrac{1}{ {x}^{2} } =  47 \\

• Again using identity –

  \\  \sf \longrightarrow \:  {(a + b)}^{2}  =  {a}^{2} +  {b}^{2} + 2ab \\

• So that –

  \\  \sf \implies  \left({x} +  \dfrac{1}{ {x} } \right)^{2} - 2(x) \left( \dfrac{1}{x} \right) =  47 \\

  \\  \sf \implies  \left({x} +  \dfrac{1}{ {x} } \right)^{2} - 2 =  47 \\

  \\  \sf \implies  \left({x} +  \dfrac{1}{ {x} } \right)^{2}  =  47 + 2 \\

  \\  \sf \implies  \left({x} +  \dfrac{1}{ {x} } \right)^{2}  =  49 \\

  \\  \sf \implies  {x} +  \dfrac{1}{ {x} }  = \pm  \sqrt{49} \\

  \\  \sf \implies  {x} +  \dfrac{1}{ {x} }  =  \pm 7 \\

• Now using identity –

  \\  \sf \longrightarrow \:  {(a + b)}^{3}  =  {a}^{3} +  {b}^{3} + 3ab(a + b) \\

Take positive(+) sign :

  \\  \sf \implies \left( {x} +  \dfrac{1}{ {x} }  \right)^{3}  =( 7)^{3}  \\

  \\  \sf \implies {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3}  + 3(x) \left( \frac{1}{x} \right) \left(x +  \dfrac{1}{x} \right)   =(7)^{3}  \\

  \\  \sf \implies {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3}  + 3(7) =(7)^{3}  \\

  \\  \sf \implies {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3}  + 21 =343  \\

  \\  \sf \implies {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3} =343  - 21 \\

  \\  \sf \implies {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3} =322  \\

  \\  \implies \large{ \boxed{  \sf{x}^{3}  +   \dfrac{1}{ {x}  ^{3}} =322  }}\\

Take negative(-) sign :

  \\  \sf \implies \left( {x} +  \dfrac{1}{ {x} }  \right)^{3}  =( - 7)^{3}  \\

  \\  \sf \implies {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3}  + 3(x) \left( \frac{1}{x} \right) \left(x +  \dfrac{1}{x} \right)   =( - 7)^{3}  \\

  \\  \sf \implies {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3}  + 3( - 7) =( - 7)^{3}  \\

  \\  \sf \implies {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3}   -  21 = - 343  \\

  \\  \sf \implies {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3} = - 343   +  21 \\

  \\  \sf \implies {x}^{3}  +  \left( \dfrac{1}{ {x} }  \right)^{3} = - 322  \\

  \\  \implies \large{ \boxed{  \sf{x}^{3}  +   \dfrac{1}{ {x}  ^{3}} = - 322  }}\\

Answered by Anonymous
8

\sf{\color{purple}{Answer:-}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\color{grey}{Given:-}}

 \sf {x}^{4}  +  \frac{1}{ {x}^{4} }  = 2207  \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\color{grey}{To~Find:-}}

 \sf  (x +  \frac{1}{x}  ) {}^{3}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\color{grey}{Solution:-}}

\sf   ({ {x}^{2} +  \frac{1}{ {x}^{2} }  })^{2}  =  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  \\↦  \sf ({ {x}^{2} +  \frac{1}{ {x}^{2} }  })^{2}  =  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2  \\↦ \sf  ({ {x}^{2} +  \frac{1}{ {x}^{2} }  })^{2}  =  2207  + 2  \\↦ \sf  ({ {x}^{2} +  \frac{1}{ {x}^{2} }  })^{2}  =  2209 \\ ↦\sf  { {x}^{2} +  \frac{1}{ {x}^{2} }  } =  \sqrt{2209}  \\ ↦\sf  { {x}^{2} +  \frac{1}{ {x}^{2} }  }  = 47

 \sf  (x +  \frac{1}{x} ) {}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  \\⇝ \sf  (x +  \frac{1}{x} ) {}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\⇝ \sf  (x +  \frac{1}{x} ) {}^{2}  =  47  + 2 \\ ⇝\sf  (x +  \frac{1}{x} ) {}^{2}  =  49 \\ ⇝\sf x +  \frac{1}{x}=   \sqrt{49}  \\⇝ \sf  x +  \frac{1}{x} = 7

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf  (x +  \frac{1}{x}  ) {}^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times x \frac{1}{x} (x +  \frac{1}{x} ) \\⇢ \sf  ( x +  \frac{1}{x} ) {}^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} } + 3(x +  \frac{1}{x}  ) \\ ⇢\sf   {7}^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(7) \\ ⇢ \sf 343 =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 21 \\⇢ \sf  {x}^{3}  +  \frac{1}{ {x}^{3} } = 343 - 21 \\⇢ \sf  {x}^{3}  +  \frac{1}{ {x}^{3} } = 322

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\color{purple}{Final~Answer:-}}

\sf  {x}^{3}  +  \frac{1}{ {x}^{3} } = 322

Similar questions