Math, asked by mohan1334, 11 days ago

solve these problems please​

Attachments:

Answers

Answered by akeertana503
10

Solution:-

______________________________________

1. \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  = a + b \sqrt{2}  \\  \\  =  \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }  \\  \\  =  \frac{(3 +  \sqrt{2}) {}^{2}  }{(3) {}^{2} - ( \sqrt{2}  ) {}^{2} }  \\  \\  =  \frac{9 + 2 + 6 \sqrt{2} }{9 - 2}  \\  \\  \frac{11  +  6 \sqrt{2} }{7}  = a + b  \sqrt{2} \\  \\  = a =  \frac{11}{7}  \\  \\ b =  \frac{6  }{11}

______________________________________

2) Please refer the attachment

______________________________________

3)x = 3 + 2 \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\  =  \frac{3 + 2 \sqrt{2} }{(3) {}^{2}  - (2 \sqrt{2}) {}^{2}  }  \\  \\  =  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  \\  = 3 - 2 \sqrt{2}

∴x +  \frac{1}{x}  = 3 + 2 \sqrt{2} + 3 - 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = 3 + 3 = 6 \\  \\ x +  \frac{1}{x}  = 6 - 2 = 4 \\  \\  = (\sqrt{x}   -  \frac{ 1  }{ \sqrt{x} } ) {}^{2}  = 4 \\  \\  \sqrt{x}  -  \frac{1}{ \sqrt{x} }  =  \sqrt{4}  \\  \\  \sqrt{x}  -  \frac{1}{ \sqrt{x} }  = 2

______________________________________

Attachments:
Similar questions