Math, asked by Anonymous, 1 month ago

solve these question pls..
❌don't spam❌​

Attachments:

Answers

Answered by yakshitakhatri2
5

 \:  \:  \:  \:  \:  \:  \:  \: \huge\colorbox{pink}{\tt{Answer ࿐}} \\  \\   \\   \\ {\sf{Let's  \: assume \:  that \: 5 \sqrt{5} + 2 \: is \: rational \: no. }} \\  \\ {\sf{\pink{∴ \: 5 \sqrt{5}   + 2 \:  =  \frac{p}{q}  \: ─━⧼ \: p \: and \: q \: are \: integers, \: q≠0}}} \\  \\ {\sf{∴ \: 5 \sqrt{5} + 2 =  \frac{a}{b} \:  ─━⧼ \: a \: and \: b \: are \: co-primes }} \\  \\ {\sf{⇝5 \sqrt{5}  =  \frac{a}{b}  - 2  }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ {\sf{⇝ \sqrt{5}   =  \frac{a - 2b}{5b} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ {\sf{\color{blue}{∴ √5 =  \frac{a - 2b}{5b}}}} \\  \\  {\sf{\green{∴ \sqrt{5} \: is \: a \: rational \: no. \:  \:  }}} \\  \\ {\sf{But, \: as \: we \: know \: that, \:  \sqrt{5 } \: is \: irrational \: no. }} \\  \\ {\sf{∴This  \:  is  \: contradiction. \:  \:  \:  \:  \: }} \\  \\ {\sf{Hence, \: our \: assumption \: is \: wrong.}} \\  \\ {\underline{\underline{\sf{\color{purple}{∴ \: 5 \sqrt{5} + 2 \: is \: an \: irrational \: no. }}}}} \\  \\ {\sf{\pink{Hence, \: proved.}}} \\

────━━━━━━━━━━━━━━━━────

Mark as brainliest ✔

Answered by itzlavish45
7

Answer:

Ok bro

Clash squad Kalahari khelenge

On 1:30

Similar questions